MEDICAL POLICY

POLICY
RELATED POLICIES
POLICY GUIDELINES
DESCRIPTION
SCOPE
BENEFIT APPLICATION
RATIONALE
REFERENCES
CODING
APPENDIX
HISTORY

Detection of Circulating Tumor Cells in the Management of Patients with Cancer

Number 2.04.37

Effective Date September 3, 2014

Revision Date(s) 08/11/14; 07/08/13; 07/10/12; 07/12/11; 08/10/10; 07/14/09; 03/11/08;10/10/06; 11/11/05; 01/11/05

Replaces N/A

Policy

[TOP]

Detection and quantification of circulating tumor cells is considered investigational in the management of patients with cancer.

Related Policies

[TOP]

12.04.33

Gene-Based Tests for Screening, Detection, and/or Management of Prostate Cancer

12.04.36

Assays of Genetic Expression in Tumor Tissue as a Technique to Determine Prognosis in Patients with Breast Cancer

Policy Guidelines

[TOP]

Coding

CPT

86152

Cell enumeration using immunologic selection and identification in fluid specimen (e.g., circulating tumor cells in blood)

81653

physician interpretation and report, when required

Description

[TOP]

The prognosis of cancer patients is often determined by the occurrence of metastatic disease. Studies have suggested that the presence of circulating tumor cells in patients with metastatic carcinoma is associated with shortened survival. The detection of circulating tumor cells might be useful for assessing prognosis and guiding cancer therapy.

Background

Circulating tumor cells (CTCs) are malignant cells that are found in the peripheral blood and originate from primary or metastatic tumors. CTCs could potentially provide prognostic information that could guide treatment decisions or aid in the monitoring of response to treatment. CTCs have been documented in multiple tumor types, such as breast, prostate, lung, and colorectal carcinomas; the largest body of data comes from studies of women with metastatic breast cancer. CTCs have also been investigated as an additional prognostic factor in non-metastatic breast cancer and could be used to determine the need for additional adjuvant chemotherapy.

Research over the past 10 years has focused on the development of methodologies with improved sensitivity and specificity. Physical techniques such as size filtration, density gradient centrifugation, and microscopic morphology continue to be used. However, biological techniques such as immunomagnetic isolation, flow cytometry, immunofluorescent microscopy, reverse transcriptase-polymerase chain reaction (RT-PCR), polymerase chain reaction (PCR), and fluorescence in situ hybridization have been added to provide required specificity.

The CellSearch™ System (Veridex) is an example of immunofluorescent technology. The technique involves identification of the circulating tumor cells in blood, which are tagged using antibody-coated magnetic beads that recognize cell surface antigens. The cells are then labeled with fluorescent dyes, which can then be quantified by a semiautomated fluorescent-based microscopy system.

Note: This policy does not address techniques for the detection of bone marrow disseminated tumor cells (DTCs) or circulating cell-free DNA.

Regulatory Status

The CellSearch™ system (Veridex) has received U.S. Food and Drug Administration (FDA) marketing clearance through the 510(k) process for monitoring metastatic breast cancer (January 2004), for monitoring metastatic colorectal cancer (November 2007), and for monitoring metastatic prostate cancer (February 2008). Veridex LLC, a Johnson & Johnson company, markets the CellSearch system. It uses automated instruments manufactured by Immunicon Corp. for sample preparation (Cell Tracks® AutoPrep) and analysis (CellSpotterAnalyzer®), together with supplies, reagents, and epithelial cell control kits manufactured by Veridex. FDA product code: NQI.

Scope

[TOP]

Medical policies are systematically developed guidelines that serve as a resource for Company staff when determining coverage for specific medical procedures, drugs or devices. Coverage for medical services is subject to the limits and conditions of the member benefit plan. Members and their providers should consult the member benefit booklet or contact a customer service representative to determine whether there are any benefit limitations applicable to this service or supply. This medical policy does not apply to Medicare Advantage.

Benefit Application

[TOP]

N/A

Rationale

[TOP]

This policy was originally created in 2004 and was updated regularly with searches of the MEDLINE database. The most recent literature review was conducted through April 17, 2014. Following is a summary of the key literature to date:

Numerous studies have reported the association of circulating tumor cells (CTCs) with prognosis and/or response to treatment in patients with various types of cancer. However, despite these correlational studies, to complete the causal chain, there must be evidence that patient management decisions based on CTC levels increases the duration or quality of life or decreases adverse events.

Literature searches have not identified any published studies that prospectively evaluate patient treatment decisions and/or health outcomes in patients managed with and without the monitoring of CTCs. Following is a description of the available literature, organized by clinical condition.

Metastatic Breast Cancer

A comprehensive meta-analysis of studies on the association between CTCs and health outcomes in patients with breast cancer was published in 2012 by Zhang et al. (1) The analysis included studies that included more than 30 patients, used reverse transcriptase-polymerase chain reaction (RT-PCR), CellSearch™ or another immunofluorescent technique to detect CTCs, and reported survival data stratified by CTC status. A total of 49 studies met eligibility criteria. In a pooled analysis of 12 studies on metastatic breast cancer; CTC positivity was associated with a significantly increased risk of disease progression (hazard ratio [HR], 1.78; 95% confidence interval [CI], 1.52 to 2.09). CTC positivity was associated with a significantly increased risk of death in patients with metastatic breast cancer (HR=2.23; 95% CI: 2.09 to 2.60; 19 studies). The authors presented a subgroup analysis by detection method; this analysis included studies on non-metastatic and metastatic breast cancer. Pooled analyses of studies using CellSearch™ found that CTC positivity significantly increased the likelihood of disease progression (HR=1.85; 95% CI: 1.53 to 2.25; 12 studies) and death (HR=2.45; 95% CI: 2.10 to 2.85; 18 studies). Studies using RT-PCR also found that CTC positivity was significantly associated with disease progression and death.

A previous 2011 meta-analysis by Zhao et al. considered only studies on CTC detected by RT-PCR. (2) A total of 24 studies met inclusion criteria, 5 of which included metastatic breast cancer. The authors did not conduct a separate analysis of studies on metastatic breast cancer. In a pooled analysis of data from 15 studies with 2,894 patients, the presence of CTCs was significantly associated with a lower overall survival (OS; HR=3.00; 95% CI: 2.29 to 3.94) and a lower relapse-free survival (RFS; HR=2.67; 95% CI: 2.09 to 3.42). The authors noted substantial heterogeneity among studies including differences in sampling time, detection methods, and demographic or clinical characteristics of the study population.

Representative prospective studies using CellSearch™ immunofluorescent technology for identifying CTC in women with metastatic breast cancer are described next:

In 2004, Cristofanilli et al. published a multicenter study that included 177 patients with measurable metastatic breast cancer who were followed up for 38.7 weeks or longer. (3) Using the CellSearch™ System, they measured the number of circulating tumor cells before initiating a new line of therapy and at first follow-up (4.5±2.4 weeks after baseline sample). Also tested were 145 normal subjects and 200 patients with benign breast diseases. The authors report detecting 2 or fewer epithelial cells per 7.5 mL of blood in all normal subjects and patients with benign breast diseases. Using a statistically validated threshold of 5 cells per 7.5 mL of blood, they found that patients below threshold at baseline (n=90; 51%) had longer median progression-free survival (PFS; 7.0 vs 2.7 months, respectively; p<0.001) and OS greater than 18 months vs. 10.1 months, respectively; p<0.001) than those above threshold (n=87; 49%). Survival duration of a subgroup (n=33) with values above threshold at baseline but below threshold at first follow-up (i.e., after the first cycle of therapy) was similar to that of patients below threshold at baseline. This subgroup’s median survival also was significantly longer than survival of those who remained above threshold despite therapy. Multivariate analysis showed that being below threshold for level of circulating tumor cells was the most statistically significant independent predictor of longer PFS and OS of all parameters studied, including hormone receptor status, HER-2/neu status, site of metastases, etc.

Nole et al. tested 80 patients with metastatic breast cancer for CTC levels before starting a new treatment and after four weeks, eight weeks, at the first clinical evaluation, and every two months thereafter. (4) Forty-nine patients had five or more cells at baseline. At the multivariate analysis, baseline number of CTCs was associated with PFS (HR=2.5; 95% CI: 1.2 to 5.4). The risk of progression for patients with five or more circulating tumor cells at the last available follow-up was five times the risk of patients with 0-4 CTCs at the same point (HR=5.3; 95% CI: 2.8 to 10.4). Patients with rising or persistent counts of five or more CTCs at last available follow-up showed a statistically significant higher risk of progression with respect to patients with less than five circulating tumor cells at both times of blood sampling.

In 2012, Pierga et al. in France reported findings from a prospective series that included 267 patients with metastatic breast cancer who were starting first-line chemotherapy. (5) CTCs were analyzed before starting treatment, before the 2nd cycle of treatment, and at the first radiologic evaluation before the 3rd or 4th cycle of treatment. At baseline, 44% of patients were positive for CTC (>5 CTC per 7.5 mL blood). Patients were followed for a median of 14.9 months. During follow-up, there were 57 deaths (21%), and 161 (60%) experienced tumor progression. Baseline CTC count was a strong predictor of PFS (p<0.001). The median PFS was 19.9 months in patients with 0 CTC and 8.2 months in patients with more than 5 CTC per 7.5 mL blood. Baseline CTC was also significantly associated with OS (p<0.001). In multivariate analysis, baseline CTC positivity was an independent prognostic factor for both PFS and OS.

Metastatic Prostate Cancer

A 2014 meta-analysis by Ma et al. examined studies on the role of CTCs and disseminated tumor cells (DTCs) on the prognosis of prostate cancer (localized as well as metastatic).(6) To be included in the review, studies needed to report the correlation of CTCs or DTCs with one or more survival outcomes. The authors assessed 54 studies for eligibility. Thirty-three studies, 27 on CTCs and 6 on DTCs met the inclusion criteria. A pooled analysis of all studies found significantly lower OS in patients with circulating tumor cells (HR=2.43; 95% CI: 2.07 to 2.86). Eight studies with a total of 946 patients used CellSearch technology to detect CTCs. A pooled analysis limited to these studies also found a significant association between CTCs and OS (HR=2.36; 95% CI: 1.95 to 2.85).

Previously, In 2011, Wang et al. published a meta-analysis of studies on the association between CTCs and prognosis in patients with metastatic castration-resistant or hormone refractory prostate cancer. (7) The authors searched the literature for studies with at least 30 patients and sufficient data to calculate relative risk (RR) of OS. The authors identified 19 relevant articles, 4 of which met study inclusion criteria. The total number of included patients was 486. All studies used the CellSearch™ system to detect CTCs. In a pooled analysis of the studies, OS was significantly higher in patients with lower levels of CTC compared with those with higher levels (>5 CTC in 7.5 mL blood; RR=2.51; 95% CI: 1.96-3.21. In a sensitivity analysis removing the study with the largest sample size (de Bono et al., 2008[6]), the RR was marginally higher (RR=3.25; 95% CI: 2.01 to 5.24). The test for study heterogeneity was not statistically significant.

The study by de Bono et al. was prospective and included patients with castration-resistant progressive prostate cancer who were initiating a new cytotoxic therapy. (8) CTC levels were measured using the CellSearch™ system at baseline and before each course of therapy until disease progression or for up to 18 months. A total of 276 patients were enrolled; of these, 33 were subsequently found to not meet eligibility criteria (e.g., did not have an evaluable baseline blood sample or scan or lacked progressive disease) and 2 patients withdrew consent, leaving 231 patients in the analysis. At baseline, 219 patients were evaluable for CTCs; of these, 125 had elevated levels (≥5 cells per 7.5 mL of blood), and 94 had less than 5 cells per mL. The primary study outcome was the association between elevated CTCs 2 to 5 weeks after initiating treatment and OS. An evaluable CTC level was available for 203 patients at the 2- to 5-week follow-up, and CTCs were elevated in 39 (19%). The group of patients with elevated CTCs after initiating treatment had a significantly shorter median survival time (9.5 months) than those without elevated CTC (20.7 months; p<0.001). Moreover, patients with elevated CTCs at all time points (n=71) had the shortest median OS, 6.8 months. Their OS was significantly shorter than other groups, specifically the group of patients with elevated baseline CTCs who converted to a nonelevated level after treatment (n=45; median OS, 21.3 months) and the group of patients with nonelevated CTCs throughout the study (n=88; median OS, >26 months). There were only 26 patients who had non-elevated CTCs at baseline and elevated CTCs after treatment; this group had a mean OS of 9.3 months. A limitation of the study was that only 203 of the 276 enrolled patients (74%) were included in the primary analysis.

Metastatic Colorectal Cancer

A 2013 meta-analysis by Groot Koerkamp et al. reviewed studies on the prognostic value of CTCs, as well as studies on the detection of (DTCs in bone marrow. (9) To be included in the review, studies had to include at least 20 patients with metastatic colorectal cancer and report long-term outcomes. A total of 16 eligible studies were included, and 12 had data suitable for meta-analysis. Most studies included detection of CTCs; only 4 included detection of DTCs. Pooled analyses found that detection of CTCs or DTCs in patients with metastatic colorectal cancer was associated with a worse OS (HR=2.47; 95% CI: 1.74 to 3.51; 11 studies) and a worse PFS (HR=2.07; 95% CI: 1.44 to 2.98; 9 studies).

One of the larger studies on the association of CTCs to survival in patients with metastatic colorectal cancer was a prospective multicenter industry-sponsored trial published in 2008 by Cohen et al. (10) To be eligible for participation, patients needed to be initiating any first- or second-line systemic therapy, or third-line therapy with an epidermal growth factor receptor inhibitor. CTC cells were assessed at baseline and at regular intervals after starting treatment. In a pre-planned interim analysis, the authors determined that at least 3 CTCs per 7.5 mL blood was the optimal cutoff to use to indicate elevated CTC level. The primary outcome was the agreement between CTC level at the 3 to 5 week follow-up and response to therapy. Agreement was defined as either a non-elevated level of CTC corresponding to lack of disease progression or an elevated level corresponding to progressive disease. A total of 481 patients were enrolled, and there were 430 evaluable patients, 320 of whom were assessable for the primary outcome. Thirty-eight of 320 (12%) had elevated levels of CTCs 3 to 5 weeks after starting treatment. By the end of the study, 20 of these 38 patients (53%) had progressive disease or were unavailable because they had died before receiving a follow-up imaging study. In comparison, 54 of the 282 (19%) patients without elevated CTCs at the 3- to 5-week follow-up had progressive disease or had died (p, not reported). OS and PFS were reported as secondary outcomes. Patients with elevated baseline CTC levels (at least 3 per 7.5 mL blood) had shorter mean PFS and OS than patients with non-elevated baseline CTCs (<3 per 7.5 mL blood). Median PFS was 4.5 and 7.9 months, respectively (p<0.001), and median OS was 9.4 and 18.5 months (p<0.001). A study limitation is that only 320 of 481 enrolled patients (67%) were included in the primary analysis.

A prospective study published in 2014 by Seeberg et al. used a cutoff of 2 or more CTCs per 7.5 mL blood.(11) The study included 194 patients with colorectal liver metastases. Twenty-six patients had 2 or more CTCs, 14 of 153 (9%) resectable patients and 12 of 41 (29%) non-resectable patients. During the follow-up period (median, 22.5 months), 69 of 194 (36%) patients died. The presence of more than 2 CTCs was associated with significantly shorter survival time in the whole group of patients (p<0.001) and in the patients with resectable disease (p=0.037) compared with patients with fewer than 2 CTCs. Moreover, the presence of 2 or more CTCs was associated with significantly shorter RFS in the total patient population (p=0.002) and in resectable patients (p<0.001).

Additional prospective studies are needed to confirm the prognostic value of the three cells per 7.5 mL blood cutoff or two cells per 7.5 mL blood cutoff, which differs from the five cells per 7.5 mL cutoff used in most other studies.

Other Conditions

Studies have also been published evaluating CTC level as a diagnostic and/or prognostic marker for patients with other types of cancer. There are no FDA-cleared tests for these indications, and none of the studies evaluated patient management decisions using levels of CTCs. Conditions include non-metastatic breast,(12) lung,(13-16) bladder,(17-19) pancreatic,(20) gastric,(21), hepatocellular,(22) and head and neck cancer,(23) and melanoma.(24,25) One meta-analysis was identified; this was published by Ma et al. in 2012 and evaluated evidence on the association between CTC level and clinical outcomes in patients with lung cancer. (16) A pooled analyses of study data found that the presence of CTCs before treatment was associated with lower OS (HR=2.61; 95% CI: 1.82 to 3.74; 9 studies) and lower PFS (HR=2.37; 95% CI: 1.41 to 3.99; 4 studies). The authors concluded that the presence of CTCs in the peripheral blood indicates a worse prognosis in patients with lung cancer.

Ongoing Clinical Trials

Treatment Decision Making Based on Blood Levels of Tumor Cells in Women With Metastatic Breast Cancer Receiving Chemotherapy (NCT00382018) (26): This RCT, sponsored by the National Cancer Institute, includes patients with metastatic breast cancer who are beginning first-line chemotherapy. Patients who have elevated levels (≥5 cells per 7.5 mL of blood) of CTCs after their first round of chemotherapy will be randomized to stay on their current treatment or switch to a different treatment regimen. Patients without elevated levels of CTCs will remain on their current treatment. The primary outcomes are PFS and OS. The expected enrollment is 651 patients. The estimated completion date for this study is May 2017.

Medico-economic Interest of Taking Into Account Circulating Tumor Cells (CTC) to Determine the Kind of First Line Treatment for Metastatic, Hormone-receptors Positive, Breast Cancers (NCT01710605) (27): This trial, known as the STIC CTC study, is an RCT that aims to evaluate outcomes with and without using CTC count as a criterion for selecting first-line therapy. CTC level will be measured using the CellSearch™ technique. Patients assigned to the CTC arm will receive hormone therapy if their CTC count is less than 5 per 7.5 mL and chemotherapy if the CTC count is 5 or more per 7.5 mL. Treatment decisions in the other arm will be according to usual criteria. The study is including patients with metastatic hormone-receptor positive breast cancer. The primary outcome is PFS over 2 years. The estimated primary completion date is March, 2016; the study aims to recruit 1,000 participants.

Summary

While studies have shown that the level of circulating tumor cells (CTCs; generally using the cutoff >5 CTC per 7.5 mL blood) is associated with the presence of metastatic disease and prognosis, the prospective use of this information to impact care has not been demonstrated. Given that insufficient evidence is available to evaluate the impact on patient management or health outcomes and additional remaining questions eg, the optimal cutoff to use, the assessment of CTCs is considered investigational.

Practice Guidelines and Position Statements

American Society of Clinical Oncology: Recommendations for the use of tumor markers in breast cancer, published in 2007, indicate that the measurement of CTCs should not be used to make the diagnosis of breast cancer or to influence any treatment decisions in those with breast cancer. (28)

National Comprehensive Care Network (NCCN): Their 2014 Clinical Practice Guidelines do not include recommendations regarding detection of CTCs used in the management of patients with colon or prostate cancer.(29-31)

National Academy of Clinical Biochemistry (NACB): In 2009, NABC issued a guideline on the use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancer. The only mention of CTCs was related to prostate cancer. The panel concluded that the measurement of circulating prostate cancer cells was not sufficiently validated to recommend its application in routine clinical practice.(32)

Medicare National Coverage

There is no national coverage determination (NCD). In the absence of an NCD, coverage decisions are left to the discretion of local Medicare carriers.

References

[TOP]

  1. Zhang L, Riethdorf S, Wu G et al. Meta-analysis of the prognostic value of circulating tumor cells in breast cancer. Clin Cancer Res 2012; 18(20):5701-10.
  2. Zhao S, Liu Y, Zhang Q et al. The prognostic role of circulating tumor cells (CTCs) detected by RT-PCR in breast cancer: a meta-analysis of published literature. Breast Cancer Res Treat 2011; 130(3):809-16.
  3. Cristofanilli M, Budd GT, Ellis MJ et al. Circulating tumor cells, disease progression and survival in metastatic breast cancer. N Engl J Med 2004; 351(8-Jan):781-91.
  4. Nole F, Munzone E, Zorzino L et al. Variation of circulating tumor cell levels during treatment of metastatic breast cancer: prognostic and therapeutic implications. Ann Oncol 2008; 19(5):891-7.
  5. Pierga JY, Hajage D, Bachelot T et al. High independent prognostic and predictive value of circulating tumor cells compared with serum tumor markers in a large prospective trial in first-line chemotherapy for metastatic breast cancer patients. Ann Oncol 2012; 23(3-Jan):618-24.
  6. Ma X, Xiao Z, Li X et al. Prognostic role of circulating tumor cells and disseminated tumor cells in patients with prostate cancer: a systematic review and meta-analysis. Tumour Biol 2014.
  7. Wang FB, Yang XQ, Yang S et al. A higher number of circulating tumor cells in peripheral blood indicates poor prognosis in prostate cancer patients-a meta-analysis. Asian Pac J Cancer Prev 2011; 12(10):2629-35.
  8. de Bono J., Scher HI, Montgomery RB et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res 2008; 14(19):6302-9.
  9. Groot Koerkamp B, Rahbari NN, Buchler MW et al. Circulating Tumor Cells and Prognosis of Patients with Resectable Colorectal Liver Metastases or Widespread Metastatic Colorectal Cancer: A Meta-Analysis. Ann Surg Oncol 2013; 20(7):2156-65.
  10. Cohen SJ, Punt CJ, Iannotti N et al. Relationship of circulating tumor cells to tumor response, progression-free survival and overall survival in patients with metastatic colorectal cancer. J Clin Oncol 2008; 26(19):3213-21.
  11. Seeberg LT, Waage A, Brunborg C et al. Circulating Tumor Cells in Patients With Colorectal Liver Metastasis Predict Impaired Survival. Ann Surg 2014.
  12. Bidard FC, Mathiot C, Delaloge S et al. Single circulating tumor cell detection and overall survival in nonmetastatic breast cancer. Ann Oncol 2010; 21(4):729-33.
  13. Krebs MG, Sloane R, Priest L et al. Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J Clin Oncol 2011; 29(12):1556-63.
  14. Naito T, Tanaka F, Ono A et al. Prognostic impact of circulating tumor cells in patients with small cell lung cancer. J Thorac Oncol 2012; 7(3):512-9.
  15. Hirose T, Murata Y, Oki Y et al. Relationship of circulating tumor cells to the effectiveness of cytotoxic chemotherapy in patients with metastatic non-small-cell lung cancer. Oncol Res 2012; 20(2-3):131-7.
  16. Ma XL, Xiao ZL, Liu L et al. Meta-analysis of circulating tumor cells as a prognostic marker in lung cancer. Asian Pac J Cancer Prev 2012; 13(4):1137-44.
  17. Guzzo TJ, McNeil BK, Bivalacqua TJ et al. The presence of circulating tumor cells does not predict extravesical disease in bladder cancer patients prior to radical cystectomy. Urol Oncol 2012; 30(1):44-8.
  18. Rink M, Chun FK, Minner S et al. Detection of circulating tumor cells in peripheral blood of patients with advanced non-metastatic bladder cancer. BJU Intl 2011; 107(10):1668-75.
  19. Gazzaniga P, de Berardinis E, Raimondi C et al. Circulating tumor cells detection has independent prognostic impact in high-risk non-muscle invasive bladder cancer. Int J Cancer 2014.
  20. de Albuquerque A., Kubisch I, Breier G et al. Multimarker gene analysis of circulating tumor cells in pancreatic cancer patients: a feasibility study. Oncology 2012; 82(1):3-10.
  21. Matsusaka S, Chin K, Ogura M et al. Circulating tumor cells as a surrogate marker for determining response to chemotherapy in patients with advanced gastric cancer. Cancer Sci 2010; 101(4):1067-71.
  22. Schulze K, Gasch C, Staufer K et al. Presence of EpCAM-positive circulating tumor cells as biomarker for systemic disease strongly correlates to survival in patients with hepatocellular carcinoma. Int J Cancer 2013; 133(9):2165-71.
  23. Nichols AC, Lowes LE, Szeto CC et al. Detection of circulating tumor cells in advanced head and neck cancer using the CellSearch system. Head Neck 2012; 34(10):1440-4.
  24. Khoja L, Lorigan P, Zhou C et al. Biomarker Utility of Circulating Tumor Cells in Metastatic Cutaneous Melanoma. J Invest Dermatol 2013; 133(6):1582-90.
  25. Bidard FC, Madic J, Mariani P et al. Detection rate and prognostic value of circulating tumor cells and circulating tumor DNA in metastatic uveal melanoma. Int J Cancer 2014; 134(5):1207-13.
  26. Sponsored by the Southwest Oncology Group. Treatment decision making based on blood levels of tumor cells in women with metastatic breast cancer receiving chemotherapy (NCT00382018). Available online at: www.guideline.gov. Last accessed July, 2014.
  27. Sponsored by Institut Curie. Medico-economic Interest of Taking Into Account Circulating Tumor Cells (CTC) to Determine the Kind of First Line Treatment for Metastatic, Hormone-receptors Positive, Breast Cancers (NCT01710605). Available online at: www.clinicaltrials.gov Last accessed July, 2014.
  28. Harris L, Fritsche H, Mennel R et al. American Society of Clinical Oncology 2007 Update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 2007; 25(33):5287-312.
  29. National Comprehensive Care Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Breast Cancer Version 1, 2014. Available online at: http://www.nccn.org/professionals/physician_gls/pdf/breast.pdf. Last accessed July, 2014.
  30. National Comprehensive Care Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Colon Cancer Version 3, 2014. Available online at: http://www.nccn.org/professionals/physician_gls/pdf/colon.pdf. Last accessed July, 2014.
  31. National Comprehensive Care Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Prostate Cancer Version 1, 2014. Available online at: http://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf. Last accessed March, 2014.
  32. National Academy of Clinical Biochemistry (NACB). The use of tumor markers in testicular, prostate, colorectal, breast and ovarian cancer. 2009. Available online at: http://www.guideline.gov/content.aspx?id=15553&search=circulating+tumor+cells. Last accessed July, 2014.
  33. Reviewed and recommended by the Oncology Advisory Panel on February 21, 2008; May 21, 2009.
  34. Blue Cross and Blue Shield Association. Detection of Circulating Tumor Cells in the Management of Patients with Cancer. Medical Policy Reference Manual, Policy 2.04.37, 2013.

Coding

[TOP]

Codes

Number

Description

CPT

86152

Cell enumeration using immunologic selection and identification in fluid specimen (e.g., circulating tumor cells in blood);

 

86153

physician interpretation and report, when required

 

86849

Unlisted immunology procedure

Appendix

[TOP]

N/A

History

[TOP]

Date

Reason

01/11/05

Add to Medicine section, Pathology/Laboratory subsection - New Policy

11/11/05

Replace Policy - Policy updated with literature search; references added; no change in policy statement.

06/30/06

Update Scope and Disclaimer - No other changes.

10/10/06

Replace Policy - Policy updated with literature search; reference added; policy statement unchanged.

01/26/07

Correction to Policy - Corrected BCBSA error in Description section of policy. No other changes.

02/22/07

Update References - Policy reviewed and recommended by OAP February 22, 2007.

02/21/08

OAP Review - Reviewed and recommended by the Oncology Advisory Panel on February 21, 2008.

03/11/08

Replace Policy - Policy updated with literature search; no change to the policy statement. References added.

07/14/09

Replace Policy - Policy updated with literature search; no change to the policy statement. References added. Reviewed and recommended by the Oncology Advisory Panel on May 21, 2009.

08/10/10

Replace Policy - Policy updated with literature review from April 2009 through March 2010. The policy statement is unchanged; rationale rewritten, references numbers 5-11 and 13 added, other references re-numbered or removed.

07/12/11

Replace Policy - Policy reviewed with literature search March 2010 through March 2011. The policy statement is unchanged; reference numbers 8, 10 and 11 added; other references re-numbered. ICD-10 codes added to policy.

12/29/11

Codes 0279T and 0280T added.

07/20/12

Replace policy. Policy reviewed with literature search through March 2012. The policy statement is unchanged; reference numbers 1, 4, 5, 9, 13, 15 and 19 added; other references re-numbered/removed.

09/18/12

Update Coding Section – ICD-10 codes are now effective 10/01/2014.

07/24/13

Replace policy. Policy reviewed with literature search through March 28, 2013. The policy statement is unchanged; reference numbers 1, 8, 14, 19, 23, 26 and 27 added; other references re-numbered/removed.

01/27/14

Update Related Policies. Edit title to 12.04.33.

09/03/14

Annual Review. Policy updated with literature review through April 17, 2014. References 6, 11, 19, 22, 25, and 32 added. Policy statement unchanged. CPT codes 88313, 88346, 88347 and 88361 removed from policy; these codes are not set to review.


Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. The Company adopts policies after careful review of published peer-reviewed scientific literature, national guidelines and local standards of practice. Since medical technology is constantly changing, the Company reserves the right to review and update policies as appropriate. Member contracts differ in their benefits. Always consult the member benefit booklet or contact a member service representative to determine coverage for a specific medical service or supply. CPT codes, descriptions and materials are copyrighted by the American Medical Association (AMA).
©2014 Premera All Rights Reserved.