MEDICAL POLICY – 8.01.61
Focal Treatments for Prostate Cancer

BCBSA Ref. Policy: 8.01.61
Effective Date: Dec. 1, 2021
Last Revised: Nov. 2, 2021
Replaces: N/A
RELATED MEDICAL POLICIES:
2.01.49 Transurethral Water Vapor Thermal Therapy for Benign Prostatic Hyperplasia
7.01.109 Magnetic Resonance–Guided Focused Ultrasound

Select a hyperlink below to be directed to that section.

POLICY CRITERIA | CODING | RELATED INFORMATION
EVIDENCE REVIEW | REFERENCES | HISTORY

∞ Clicking this icon returns you to the hyperlinks menu above.

Introduction

There are several ways to treat prostate cancer, depending on how large the cancer is and whether it has spread. Some treatment choices are surgery, several different types of radiation, or watchful waiting. A new type of treatment has been proposed. This treatment, known as focal therapy, aims at destroying specific areas of cancer without taking out the prostate gland. There are different ways of trying to treat the tumor while it’s still inside the gland. These are laser, ultrasound, extreme cold, radiofrequency, and cell-killing drugs that are activated by a special type of light. All forms of focal therapy for prostate cancer are unproven (investigational). Larger and longer studies are needed to see if focal treatments are as good as or better than proven methods of treating prostate cancer.

Note: The Introduction section is for your general knowledge and is not to be taken as policy coverage criteria. The rest of the policy uses specific words and concepts familiar to medical professionals. It is intended for providers. A provider can be a person, such as a doctor, nurse, psychologist, or dentist. A provider also can be a place where medical care is given, like a hospital, clinic, or lab. This policy informs them about when a service may be covered.

Policy Coverage Criteria
Focal treatments for prostate cancer

Use of any focal therapy modality to treat patients with localized prostate cancer is investigational.

Coding

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td></td>
</tr>
<tr>
<td>0582T</td>
<td>Transurethral ablation of malignant prostate tissue by high-energy water vapor thermotherapy, including intraoperative imaging and needle guidance</td>
</tr>
<tr>
<td>0655T</td>
<td>Transperineal focal laser ablation of malignant prostate tissue, including transrectal imaging guidance with mr-fused images or other enhanced ultrasound imaging (new code effective 7/1/21)</td>
</tr>
<tr>
<td>55880</td>
<td>Ablation of malignant prostate tissue, transrectal, with high intensity-focused ultrasound (HIFU), including ultrasound guidance (New code effective 1/1/2021)</td>
</tr>
<tr>
<td>55899</td>
<td>Unlisted procedure, male genital system</td>
</tr>
</tbody>
</table>

Note: CPT codes, descriptions and materials are copyrighted by the American Medical Association (AMA). HCPCS codes, descriptions and materials are copyrighted by Centers for Medicare Services (CMS).

Related Information

N/A

Evidence Review

Description

Prostate cancer is the second most common cancer diagnosed men receive in the United States, and the behavior of localized prostate cancer can prove difficult to predict on a case-by-case basis. Most men with prostate cancer undergo whole-gland treatments, which can often lead to
substantial adverse events. To reduce tumor burden and minimize morbidity associated with radical treatments, investigators have developed a therapy known as focal treatment. Focal treatment seeks to ablate either an “index” lesion (defined as the largest cancerous lesion with the highest-grade tumor), or alternatively, to ablate nonindex lesions and other areas where cancer has been known to occur. This policy addresses several ablative methods used to remove cancerous lesions in localized prostate cancer (eg, focal laser ablation, high-intensity focused ultrasound (HIFU), cryoablation, radiofrequency ablation (RFA), photodynamic therapy). All methods, except focal laser ablation, use ultrasound guidance to focus on the tumor (focal laser ablation uses magnetic resonance imaging to guide the probe).

Background

Prostate Cancer

Prostate cancer is the second most common cancer diagnosed among men in the United States. According to the National Cancer Institute, nearly 248,530 new cases are estimated to be diagnosed in the United States in 2021, and associated with around 34,130 deaths. Autopsy studies in the pre prostate-specific antigen (PSA) screening era identified incidental cancerous foci in 30% of men 50 years of age, with incidence reaching 75% at age 80 years.1 However, the National Cancer Institute Surveillance Epidemiology and End Results Program data have shown age-adjusted cancer-specific mortality rates for men with prostate cancer declined from 40 per 100,000 in 1992 to 19 per 100,000 in 2018. This decline has been attributed to a combination of earlier detection via PSA screening and improved therapies.

Diagnosis

From a clinical standpoint, different types of localized prostate cancers may appear similar during initial diagnosis.2 However, prostate cancer often exhibits varying degrees of risk of progression that may not be captured by accepted clinical risk categories (eg, D'Amico criteria) or prognostic tools based on clinical findings (eg, PSA titers, Gleason grade, or tumor stage).3-7 In studies of conservative management, the risk of localized disease progression based on prostate cancer–specific survival rates at 10 years may range from 15%8,9 to 20%10 to perhaps 27% at 20-year follow-up.11 Among elderly men (≥70 years) with this type of low-risk disease, comorbidities typically supervene as a cause of death; these men will die from the comorbidities of prostate cancer present rather than from the cancer itself. Other very similar-appearing low-
risk tumors may progress unexpectedly and rapidly, quickly disseminating and becoming incurable.

Treatments

The divergent behavior of localized prostate cancers creates uncertainty whether to treat immediately.\(^{12,13}\) A patient may choose definitive treatment upfront.\(^ {14}\) Surgery (radical prostatectomy) or external beam radiotherapy are frequently used to treat patients with localized prostate cancer.\(^ {13,15}\) Complications most commonly reported with radical prostatectomy or external-beam radiotherapy and with the greatest variability are incontinence (0%-73%) and other genitourinary toxicities (irritative and obstructive symptoms); hematuria (typically ≤5%); gastrointestinal and bowel toxicity, including nausea and loose stools (25%-50%); proctopathy, including rectal pain and bleeding (10%-39%); and erectile dysfunction, including impotence (50%-90%).\(^ {15}\)

American Urological Association guidelines have suggested patients with low-risk and intermediate-risk disease have the option of entering an “active surveillance” protocol, which takes into account patient age, patient preferences, and health conditions related to urinary, sexual, and bowel function.\(^ {16}\) With this approach, patients forgo immediate therapy but continue regular monitoring until signs or symptoms of disease progression are evident — at which point curative treatment is instituted.\(^ {17,18}\)

Focal Treatment of Localized Prostate Cancer

Given significant uncertainty in predicting the behavior of individual localized prostate cancers, and the substantial adverse effects associated with definitive treatments, investigators have sought a therapeutic middle ground. The latter seeks to minimize the morbidity associated with radical treatment in those who may not actually require surgery while reducing tumor burden to an extent that reduces the chances for rapid progression to incurability. This approach is termed focal treatment, in that it seeks to remove — using any of several ablative methods described next — cancerous lesions at high risk of progression, leaving behind uninvolved glandular parenchyma. The overall goal of any focal treatment is to minimize the risk of early tumor progression and preserve erectile, urinary and rectal functions by reducing damage to the neurovascular bundles, external sphincter, bladder neck, and rectum.\(^ {19,20,21,22,23}\) Although focal treatments are offered as an alternative middle approach to manage localized prostate cancer, several key issues must be considered in choosing it. They include patient selection, lesion selection, therapy monitoring, and modalities used to ablate lesions.
Patient Selection

A proportion of men with localized prostate cancer have been reported to have (or develop) serious misgivings and psychosocial problems in accepting active surveillance, sometimes leading to inappropriately discontinuing it.\(^\text{24}\) Thus, the appropriate patient selection is imperative for physicians who must decide whether to recommend active surveillance or focal treatment for patients who refuse radical therapy or for whom it is not recommended due to the risk/benefit balance.\(^\text{25}\)

Lesion Selection

Proper lesion selection is a second key consideration in choosing focal treatment for localized prostate cancer. Although prostate cancer is a multifocal disease, clinical evidence has shown that between 10% and 40% of men who undergo radical prostatectomy for a presumed multifocal disease actually have a unilaterally confined discrete lesion, which, when removed, would “cure” the patient.\(^\text{26,27,28}\) This view presumably has driven the use of regionally targeted focal treatment variants, such as hemiablation of half the gland containing the tumor, or subtotal prostate ablation via the “hockey stick” method.\(^\text{29}\) While these approaches can be curative, the more extensive the treatment, the more likely the functional adverse outcomes would approach those of radical treatments.

The concept that clinically indolent lesions comprise most of the tumor burden in organ-confined prostate cancer led to the development of a lesion-targeted strategy, which is referred to as “focal therapy” in this policy.\(^\text{30}\) This involves treating only the largest and highest grade cancerous focus (referred to as the “index lesion”), which has been shown in pathologic studies to determine clinical progression of disease.\(^\text{31,32}\) This concept is supported by molecular genetics evidence that suggests a single index tumor focus is usually responsible for disease progression and metastasis.\(^\text{33,34}\) The index lesion approach leaves in place small foci less than 0.5 cm\(^3\) in volume, with Gleason score less than 7, that are considered unlikely to progress over a 10- to 20-year period.\(^\text{35,36,37}\) This also leaves available subsequent definitive therapies as needed should disease progress.

Identification of prostate cancer lesions (disease localization) particularly the index lesion, is critical to the oncologic success of focal therapy; equally important to success is the ability to guide focal ablation energy to the tumor and assess treatment effectiveness. At present, no single modality reliably meets the requirements for all three activities (disease localization, focal ablation energy to the tumor, assessment of treatment effectiveness).\(^\text{25,30}\) Systematic transrectal
ultrasound–guided biopsy alone has been investigated; however, it has been considered insufficient for patient selection or disease localization for focal therapy.38,39,40,41,42

Multiparametric magnetic resonance imaging (mpMRI), typically including T1-, T2-, diffusion-weighted imaging, and dynamic contrast-enhanced imaging, has been recognized as a promising modality to risk-stratify prostate cancer and select patients and lesions for focal therapy.24,30,38 Evidence has shown mpMRI can detect high-grade, large prostate cancer foci with performance similar to transperineal prostate mapping using a brachytherapy template.43 For example, for the primary end point definition (lesion, \(\geq 4\) mm; Gleason score, \(\geq 3+4\)), with transperineal prostate mapping as the reference standard, sensitivity, negative predictive value, and negative likelihood ratios with mpMRI were 58% to 73%, 84% to 89%, and 0.3 to 0.5, respectively. Specificity, positive predictive value, and positive likelihood ratios were 71% to 84%, 49% to 63%, and 2.0 to 3.44, respectively. The negative predictive value of mpMRI appears sufficient to rule out clinically significant prostate cancer and may have clinical use in this setting. However, although mpMRI technology has the capability to detect and risk-stratify prostate cancer, several issues constrain its widespread use for these purposes (eg, mpMRI requires highly specialized MRI-compatible equipment, biopsy within the MRI scanner is challenging, interpretation of prostate MRI images requires experienced uroradiologists), and it is still necessary to histologically confirm suspicious lesions using transperineal prostate mapping.44

\textit{Therapy Monitoring}

Controversy exists about the proper end points for focal therapy of prostate cancer. The primary end point of focal ablation of clinically significant disease with negative biopsies at 12 months posttreatment is generally accepted according to a European consensus report.38 The clinical validity of an MRI to analyze the presence of residual or recurrent cancer compared with histologic findings is offered as a secondary end point. However, MRI findings alone are not considered sufficient in follow-up.38 Finally, although investigators have indicated PSA levels should be monitored, PSA levels are not considered valid end points because the utility of PSA kinetics in tissue preservation treatments has not been established.35

\textit{Modalities Used to Ablate Lesions}

Five ablative methods for which clinical evidence is available are considered in this policy: focal laser ablation; high-intensity focused ultrasound; cryoablation; radiofrequency ablation; and photodynamic therapy.19,20,22,23,29,30,33,35,38,45,46 Each method requires placement of a needle probe
into a tumor volume followed by delivery of some type of energy that destroys the tissue in a controlled manner. All methods except focal laser ablation currently rely on ultrasound guidance to the tumor focus of interest; focal laser ablation uses MRI to guide the probe.

Focal Laser Ablation

Focal laser ablation refers to the destruction of tissue using a focused beam of electromagnetic radiation emitted from a laser fiber introduced transperineally or transrectally into the cancer focus. Tissue is destroyed through the thermal conversion of the focused electromagnetic energy into heat, causing coagulative necrosis. Other terms for focal laser ablation include photothermal therapy, laser interstitial therapy, and laser interstitial photoocoagulation.47

High-Intensity Focused Ultrasound

High-intensity focused ultrasound focuses high-energy ultrasound waves on a single location, which increases the local tissue temperature to over 80°C. This causes a discrete locus of coagulative necrosis of approximately 3x3x10 mm. The surgeon uses a transrectal probe to plan, perform, and monitor treatment in a real-time sequence to ablate the entire gland or small discrete lesions.

Cryoablation

Cryoablation induces cell death through direct cellular toxicity from disruption of the cell membrane caused by ice-ball crystals and vascular compromise from thrombosis and ischemia secondary to freezing below -30°C. Using a transperineal prostate mapping template, cryoablation is performed by transperineal insertion under transrectal ultrasound guidance of a varying number of cryoprobe needles into the tumor.

Radiofrequency Ablation

Radiofrequency ablation (RFA) uses energy produced by a 50-watt generator at a frequency of 460 kHz. Energy is transmitted to the tumor focus through 15 needle electrodes inserted transperineally under ultrasound guidance. RFA produces an increase in tissue temperature causing coagulative necrosis.
Photodynamic Therapy

Photodynamic therapy uses an intravenous photosensitizing agent, which distributes through prostate tissue, followed by light delivered transperineally by inserted needles. The light induces a photochemical reaction that produces reactive oxygen species that are highly toxic and causes functional and structural tissue damage (ie, cell death). A major concern with photodynamic therapy is that real-time monitoring of tissue effects is not possible, and the variable optical properties of prostate tissue complicate the assessment of necrosis and treatment progress.

Summary of Evidence

For individuals who have primary localized prostate cancer who receive focal therapy using laser ablation, HIFU, cryoablation, RFA, or photodynamic therapy, the evidence includes systematic reviews, studies from a registry cohort, and numerous observational studies. The relevant outcomes are overall survival (OS), disease-specific survival, symptoms, change in disease status, functional outcomes, quality of life (QOL), and treatment-related morbidity. The evidence is highly heterogeneous and inconsistently reports clinical outcomes. No prospective, comparative evidence was found for the majority of focal ablation techniques versus current standard treatment of localized prostate cancer, including radical prostatectomy, external-beam radiotherapy, or active surveillance. Methods have not been standardized to determine which and how many identified cancerous lesions should be treated for best outcomes. No evidence supports which, if any, of the focal techniques leads to better functional outcomes. Although high disease-specific survival rates have been reported, the short follow-up periods and small sample sizes preclude conclusions on the effect of any of these techniques on OS rates. The adverse event rates associated with focal therapies appear to be superior to those associated with radical treatments (eg, radical prostatectomy, external-beam radiotherapy); however, the evidence is limited in its quality, reporting, and scope. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

Ongoing and Unpublished Clinical Trials

Some currently ongoing trials that might influence this policy are listed in Table 1.
Table 1. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT04049747</td>
<td>Imperial Prostate 4: Comparative Health Research Outcomes of NOvel Surgery in Prostate Cancer</td>
<td>2450</td>
<td>May 2027</td>
</tr>
<tr>
<td>NCT03531099</td>
<td>Phase 3, Multicenter, Randomized Study, Evaluating the Efficacy and Tolerability of Focused HIFU Therapy Compared to Active Surveillance in Patients With Significant Low Risk Prostate Cancer</td>
<td>146</td>
<td>Oct 2025</td>
</tr>
</tbody>
</table>

NCT: national clinical trial
*Denotes industry-sponsored or cosponsored trial

Practice Guidelines and Position Statements

The purpose of the following information is to provide reference material. Inclusion does not imply endorsement or alignment with the evidence review conclusions.

Guidelines or position statements will be considered for inclusion if they were issued by, or jointly by, a U.S. professional society, an international society with U.S. representation, or National Institute for Health and Care Excellence (NICE). Priority will be given to guidelines that are informed by a systematic review, include strength of evidence ratings, and include a description of management of conflict of interest.

National Comprehensive Cancer Network

The National Comprehensive Cancer Network (NCCN) guidelines for prostate cancer (v.2.2021) recommend only cryosurgery or HIFU as local therapy options for radiotherapy recurrence in the absence of metastatic disease. Cryotherapy or other local therapies are not recommended as routine primary therapy for localized prostate cancer due to lack of long-term data comparing these treatments to radiation or radical prostatectomy.62
National Institute for Health and Care Excellence

The National Institute for Health and Care Excellence (2019) issued guidance on the use of cryoablation for localized prostate cancer. Cryoablation and high-intensity ultrasound are not recommended for the treatment of localized prostate cancer because there was a lack of evidence on quality-of-life benefits and long-term survival.

American Urological Association et al

The American Urological Association, along with the American Society for Radiation Oncology and the Society for Urologic Oncology (2017) updated their joint guidelines on the management of clinically localized prostate cancer. The guidelines include the following recommendation on focal treatments:

- Clinicians should inform low-risk prostate cancer patients who are considering focal therapy or high-intensity focused ultrasound (HIFU) that these interventions are not standard care options because comparative outcome evidence is lacking. (Expert Opinion)
- Clinicians should inform intermediate-risk prostate cancer patients who are considering focal therapy or HIFU that these interventions are not standard care options because comparative outcome evidence is lacking. (Expert Opinion)
- Cryosurgery, focal therapy and HIFU treatments are not recommended for men with high-risk localized prostate cancer outside of a clinical trial. (Expert Opinion)

National Cancer Institute

The National Cancer Institute (NCI; 2018) updated its information on prostate cancer treatments. The NCI indicated that cryoablation, photodynamic therapy, and HIFU were new treatment options currently being studied in national trials. The NCI offers no recommendation for or against these treatments.

U.S. Preventive Services Task Force Recommendations

The U.S. Preventive Services Task Force published recommendations for prostate cancer screening. However, there are no recommendations for focal treatment of prostate cancer.
Medicare National Coverage

There is no national coverage determination.

Regulatory Status

Focal Laser Ablation

In 2010, the Visualase® Thermal Therapy System (Medtronic) and, in 2015, the TRANBERG Laser fiber (Clinical Laserthermia Systems) were cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process to necrotize or coagulate soft tissue through interstitial irradiation or thermal therapy under MRI guidance for multiple indications including urology, at wavelengths 800 to 1064 nm. In 2021, the FDA granted a breakthrough device designation to a novel artificial intelligence (AI)-enabled focal therapy system for the treatment of localized prostate cancer. The Avenda® Health Focal Therapy System combines an AI-based margin prediction software algorithm with focal laser ablation to deliver treatment directly to the prostate tumor. FDA product code: LLZ, GEX, FRN.

High-Intensity Focused Ultrasound

In October 2015, the Sonablate® 450 (SonaCare Medical) was cleared for marketing through the 510(k) process after approval of a de novo request and classification as class II under the generic name “high intensity ultrasound system for prostate tissue ablation”. This device was the first of its kind to be approved in the United States. In November 2015, Ablatherm®-HIFU (EDAP TMS) was cleared for marketing by the FDA through the 510(k) process. In June 2018, EDAP received 510(k) clearance for its Focal-One® HIFU device designed for prostate tissue ablation procedures. This device fuses magnetic resonance and 3D biopsy data with real-time ultrasound imaging, allowing urologists to view detailed images of the prostate on a large monitor and direct high-intensity ultrasound waves to ablate the targeted area.
Cryoablation

Some cryotherapy devices cleared for marketing by the FDA through the 510(k) process for cryoablation of the prostate include: Visual-ICE® (Galil Medical), Ice Rod CX, CryoCare® (Galil Medical), IceSphere (Galil Medical), and Cryocare® Systems (Endocare®; HealthTronics). FDA product code: GEH.

Radiofrequency Ablation

Radiofrequency ablation (RFA) devices have been cleared for marketing by the FDA through the 510(k) process for general use for soft tissue cutting and coagulation and ablation by thermal coagulation. Under this general indication, RFA may be used to ablate tumors. FDA product code: GEI.

Photodynamic Therapy

The FDA has granted approval to several photosensitizing drugs and light applicators. Porfimer sodium (Photofrin®; Axcan Pharma) and psoralen are photosensitizer ultraviolet lamps used to treat cancer; they were cleared for marketing by the FDA through the 510(k) process. FDA product code: FTC.

In 2020, an FDA advisory committee voted against recommending approval of padeliporfin di-potassium (Tookad®, Steba Biotech), a minimally invasive photodynamic therapy for localized prostate cancer, citing concerns that men with very low-risk disease would potentially choose this therapy instead of active surveillance, despite the unproven long-term benefits and harms of treatment.

References

25. Passoni NM, Polascik TJ. How to select the right patients for focal therapy of prostate cancer?. Curr Opin Urol. May 2014; 24(3): 203-8. PMID 24625428

History

<table>
<thead>
<tr>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/14/15</td>
<td>New Policy. Policy created with literature review through March 3, 2015. Use of any focal therapy modality is considered investigational for treatment of localized prostate cancer.</td>
</tr>
<tr>
<td>11/01/16</td>
<td>Annual Review, approved October 11, 2016. Policy updated with literature review through July 26, 2016; references 55-57 and 59-63 were added. Policy statement unchanged.</td>
</tr>
<tr>
<td>08/01/17</td>
<td>Interim review, approved July 11, 2017. Policy moved into new format. No changes to policy statement.</td>
</tr>
<tr>
<td>12/01/18</td>
<td>Annual Review, approved November 6, 2018. Policy updated with literature review through July 2018; reference 57 added; reference 61 updated; several references removed. Policy statement unchanged. Removed CPT code 53899, added CPT code 53854 (new code effective 1/1/19).</td>
</tr>
<tr>
<td>05/10/19</td>
<td>Minor edit, added note to clarify that this policy does not address Rezum System for Benign Prostatic Hyperplasia (BPH).</td>
</tr>
<tr>
<td>09/01/19</td>
<td>Minor edit, added 2.01.49 to Related Policies.</td>
</tr>
<tr>
<td>01/01/20</td>
<td>Coding update, added CPT code 0582T (new code effective 1/1/20).</td>
</tr>
<tr>
<td>08/01/20</td>
<td>Coding update. Removed CPT code 0582T.</td>
</tr>
<tr>
<td>07/01/21</td>
<td>Coding update, Added CPT code 0655T.</td>
</tr>
<tr>
<td>Date</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
</tbody>
</table>

Disclaimer. This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. The Company adopts policies after careful review of published peer-reviewed scientific literature, national guidelines and local standards of practice. Since medical technology is constantly changing, the Company reserves the right to review and update policies as appropriate. Member contracts differ in their benefits. Always consult the member benefit booklet or contact a member service representative to determine coverage for a specific medical service or supply. CPT codes, descriptions and materials are copyrighted by the American Medical Association (AMA). ©2021 Premera All Rights Reserved.

Scope. Medical policies are systematically developed guidelines that serve as a resource for Company staff when determining coverage for specific medical procedures, drugs or devices. Coverage for medical services is subject to the limits and conditions of the member benefit plan. Members and their providers should consult the member benefit booklet or contact a customer service representative to determine whether there are any benefit limitations applicable to this service or supply. This medical policy does not apply to Medicare Advantage.
Discrimination is Against the Law

Premera Blue Cross (Premera) complies with applicable Federal and Washington state civil rights laws and does not discriminate on the basis of race, color, national origin, age, disability, sex, gender identity, or sexual orientation. Premera does not exclude people or treat them differently because of race, color, national origin, age, disability, sex, gender identity, or sexual orientation. Premera provides free aids and services to people with disabilities to communicate effectively with us, such as qualified sign language interpreters and written information in other formats (large print, audio, accessible electronic formats, other formats). Premera provides free language services to people whose primary language is not English, such as qualified interpreters and information written in other languages. If you need these services, contact the Civil Rights Coordinator. If you believe that Premera has failed to provide these services or discriminated in another way on the basis of race, color, national origin, age, disability, sex, gender identity, or sexual orientation, you can file a grievance with: Civil Rights Coordinator — Complaints and Appeals, PO Box 91102, Seattle, WA 98111, Toll free: 855-332-4535, Fax: 425-918-5592, TTY: 711, Email AppealsDepartmentInquiries@Premera.com. You can file a grievance in person or by mail, fax, or email. If you need help filing a grievance, the Civil Rights Coordinator is available to help you. You can also file a civil rights complaint with the U.S. Department of Health and Human Services, Office for Civil Rights, electronically through the Office for Civil Rights Complaint Portal, available at https://ocrportal.hhs.gov/ocr/portal/lobby.jsf, or by mail or phone at: U.S. Department of Health and Human Services, 200 Independence Ave SW, Room 509F, HHH Building, Washington, D.C. 20201, 1-800-368-1019, 800-537-7697 (TDD). Complaint forms are available at http://www.hhs.gov/ocr/office/file/index.html.

Alaska residents: Contact the Alaska Division of Insurance via email at insurance@alaska.gov, or by phone at 907-269-7900 or 1-800-INSURAK (in-state, outside Anchorage).

Language Assistance

ATENCIÓN: si habla español, tiene a su disposición servicios gratuitos de asistencia lingüística. Llame al 800-722-1471 (TTY: 711).

注: 如您使用繁體中文，您可以免費獲得語言援助服務。請致電 800-722-1471 (TTY: 711)。

주의: 한국어를 사용하시는 경우, 언어 지원 서비스를 무료로 이용하실 수 있습니다. 800-722-1471 (TTY: 711) 번으로 전화해 주십시오.

ВНИМАНИЕ: Если вы говорите на русском языке, то вам доступны бесплатные услуги переводчика. Звоните 800-722-1471 (телетайп: 711).

УБАГА! Якщо ви розмовляєте українською мовою, ви можете звернутися до безкоштовної служби мовної підтримки. Телефонуйте за номером 800-722-1471 (телетайп: 711).

सिकुछ हिंदी: हमारी फ्री लैंग्वेज सेवा आपके लिए उपलब्ध है। कैल करें 800-722-1471 (तर्क: 711)।

프랑스어 하신 분들께: 뇌하단 질환, 신체적, 정신적 문제를 보유한 분들에게는 자발적인 언어 지원 기관이 있습니다. 800-722-1471 (TTY: 711).

Premera Blue Cross is an independent licensee of the Blue Cross Blue Shield Association serving businesses and residents of Alaska and Washington State, excluding Clark County.

052493 (07-01-2021)