MEDICAL POLICY – 8.01.52
Orthopedic Applications of Stem Cell Therapy (Including Allografts and Bone Substitutes Used with Autologous Bone Marrow)

Introduction

Mesenchymal stem cells are adult stem cells which are usually found in the bone marrow. These stem cells can generate other types of cells that are part of the body’s musculoskeletal system, such as bone, cartilage, and muscle. Stem cells are being studied as a way to treat orthopedic problems like damaged bone, ligaments, tendons, and the discs between the bones of the spine. Using stem cells to treat orthopedic problems is unproven. Studies have not yet shown the best ways to gather and deliver these cells. Studies also have not yet shown that using stem cells for orthopedic conditions leads to better health results compared to usual treatments.

Note: The Introduction section is for your general knowledge and is not to be taken as policy coverage criteria. The rest of the policy uses specific words and concepts familiar to medical professionals. It is intended for providers. A provider can be a person, such as a doctor, nurse, psychologist, or dentist. A provider also can be a place where medical care is given, like a hospital, clinic, or lab. This policy informs them about when a service may be covered.
Policy Coverage Criteria

Note: This policy does not address unprocessed allograft bone.

<table>
<thead>
<tr>
<th>Service</th>
<th>Investigational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesenchymal stem cell therapy</td>
<td>Mesenchymal stem cell therapy is considered investigational for all orthopedic applications, including use in repair or regeneration of musculoskeletal tissue.</td>
</tr>
<tr>
<td>Allograft bone products containing viable stem cells</td>
<td>Allograft bone products containing viable stem cells, including but not limited to demineralized bone matrix (DBM) with stem cells, are considered investigational for all orthopedic applications.</td>
</tr>
<tr>
<td>Allograft or synthetic bone graft substitutes</td>
<td>Allograft or synthetic bone graft substitutes that must be combined with autologous blood or bone marrow are considered investigational for all orthopedic applications.</td>
</tr>
</tbody>
</table>

Coding

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td></td>
</tr>
<tr>
<td>0263T</td>
<td>Intramuscular autologous bone marrow cell therapy, with preparation of harvested cells, multiple injections, one leg, including ultrasound guidance, if performed; complete procedure including unilateral or bilateral bone marrow harvest</td>
</tr>
<tr>
<td>0264T</td>
<td>Intramuscular autologous bone marrow cell therapy, with preparation of harvested cells, multiple injections, one leg, including ultrasound guidance, if performed; complete procedure excluding bone marrow harvest</td>
</tr>
<tr>
<td>0265T</td>
<td>Intramuscular autologous bone marrow cell therapy, with preparation of harvested cells, multiple injections, one leg, including ultrasound guidance, if performed; unilateral or bilateral bone marrow harvest only for intramuscular autologous bone marrow cell therapy</td>
</tr>
<tr>
<td>0565T</td>
<td>Autologous cellular implant derived from adipose tissue for the treatment of osteoarthritis of the knees; tissue harvesting and cellular implant creation</td>
</tr>
<tr>
<td>0566T</td>
<td>Autologous cellular implant derived from adipose tissue for the treatment of osteoarthritis of the knees; injection of cellular implant into knee joint including ultrasound guidance, unilateral</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>20999</td>
<td>Unlisted procedure, musculoskeletal system, general</td>
</tr>
<tr>
<td>38241</td>
<td>Hematopoietic progenitor cell (HPC); autologous transplantation</td>
</tr>
</tbody>
</table>

Note: CPT codes, descriptions and materials are copyrighted by the American Medical Association (AMA). HCPCS codes, descriptions and materials are copyrighted by Centers for Medicare Services (CMS).

Related Information

Benefit Application

Stem cell injections are currently performed at select centers in the United States. Therefore, requests for it may be made for an out-of-network facility.

Evidence Review

Description

Mesenchymal stem cells (MSCs) have the capability to differentiate into a variety of tissue types, including various musculoskeletal tissues. Potential uses of MSCs for orthopedic applications include treatment of damaged bone, cartilage, ligaments, tendons, and intervertebral discs.

Background

Mesenchymal Stem Cells

MSCs are multipotent cells (also called stromal multipotent cells) that can differentiate into various tissues including organs, trabecular bone, tendon, articular cartilage, ligaments, muscle, and fat. MSCs are associated with the blood vessels within bone marrow, synovium, fat, and muscle, where they can be mobilized for endogenous repair as occurs with healing of bone fractures. Tissues such as muscle, cartilage, tendon, ligaments, and vertebral discs show limited capacity for endogenous repair because of the limited presence of the triad of functional tissue
components: vasculature, nerves, and lymphatics. Orthobiologics is a term introduced to
describe interventions using cells and biomaterials to support healing and repair. Cell therapy is
the application of MSCs directly to a musculoskeletal site. Tissue engineering techniques use
MSCs and/or bioactive molecules such as growth factors and scaffold combinations to improve
the efficiency of repair or regeneration of damaged musculoskeletal tissues.¹

Bone-marrow aspirate is considered the most accessible source and, thus, the most common
place to isolate MSCs for treatment of musculoskeletal disease. However, harvesting MSCs from
bone marrow requires a procedure that may result in donor-site morbidity. Also, the, the
number of MSCs in bone marrow is low, and the number and differentiation capacity of bone
marrow–derived MSCs decreases with age, limiting their efficiency when isolated from older
patients.

In vivo, the fate of stem cells is regulated by signals in the local 3-dimensional
microenvironment from the extracellular matrix and neighboring cells. It is believed the success
of tissue engineering with MSCs will also require an appropriate 3-dimensional scaffold or
matrix, culture conditions for tissue-specific induction, and implantation techniques that provide
appropriate biomechanical forces and mechanical stimulation. The ability to induce cell division
and differentiation without adverse effects, such as the formation of neoplasms, remains a
significant concern. Given that each tissue type requires different culture conditions, induction
factors (signaling proteins, cytokines, growth factors), and implantation techniques, each
preparation must be individually examined.

Summary of Evidence

For individuals who have cartilage defects, meniscal defects, joint fusion procedures, or
osteonecrosis who receive stem cell therapy, the evidence includes small randomized controlled
trials (RCTs) and nonrandomized comparative trials. The relevant outcomes are symptoms,
morbid events, functional outcomes, quality of life, and treatment-related morbidity. Use of
MSCs for orthopedic conditions is an active area of research. Despite continued research into
the methods of harvesting and delivering treatment, there are uncertainties regarding the
optimal source of cells and the delivery method. Studies have included MSCs from bone
marrow, adipose tissue, peripheral blood. Overall, the quality of evidence is low and there is a
possibility of publication bias. The strongest evidence to date is on MSCs expanded from bone
marrow, which includes several phase 1/2 RCTs. Limitations in these initial trials preclude
reaching conclusions, but the results to date do support future study in phase 3 trials.
Alternative methods of obtaining MSCs have been reported in a smaller number of trials and
with mixed results. Additional study in a larger sample of patients with longer follow-up would
be needed to evaluate the long-term efficacy and safety of these procedures. Also, expanded MSCs for orthopedic applications are not U.S. Food and Drug Administration (FDA)–approved (concentrated autologous MSCs do not require agency approval). Overall, there is a lack of evidence that clinical outcomes are improved. The evidence is insufficient to determine the effects of the technology on health outcomes.

Ongoing and Unpublished Clinical Trials

Some currently ongoing and unpublished trials that might influence this review are listed in Table 1. Many are observational studies with commercially available products (eg, Cartistem, AlloStem).

Table 1. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT04043819a</td>
<td>Evaluation of Safety and Exploratory Efficacy of PSC-01, an Autologous Adipose-derived Stromal Vascular Fraction Cell Therapy Product for the Treatment of Knee Osteoarthritis</td>
<td>125</td>
<td>Jan 2021</td>
</tr>
<tr>
<td>NCT03818737</td>
<td>Randomized Multicenter Phase 3 Single-blind Trial Comparing the Efficacy of Corticosteroid Control to Mesenchymal Stem Cell Preparations From Autologous Bone Marrow Concentrate (BMAC), Adipose-derived Stem Cells in the Form of Stromal Vascular Fraction (SVF), and Third-party Human Mesenchymal Stem Cells Manufactured From Umbilical Cord Tissue for the Treatment of Unilateral Knee Osteoarthritis (OA)</td>
<td>480</td>
<td>Dec 2021</td>
</tr>
<tr>
<td>NCT04310215a</td>
<td>A Multi-center, Single-blind, Randomized, Phase III Clinical Trial to Evaluate the Efficacy and Safety of Adding CARTISTEM® on Microfracture in Patients With Talar Chondral or Osteochondral Defect</td>
<td>100</td>
<td>Dec 2021</td>
</tr>
<tr>
<td>NCT02582489</td>
<td>Prospective, Randomized, Double-blind Clinical Trial to Investigate the Efficacy of Autologous Bone Marrow Aspirate Concentrate Post-Meniscectomy</td>
<td>100</td>
<td>Jan 2022</td>
</tr>
<tr>
<td>NCT03067870</td>
<td>Transplantation of Autologous Purified Bone Marrow Derived Specific Populations of Stem Cells and Mesenchymal Stem Cells in Patients With Rheumatoid Arthritis</td>
<td>100</td>
<td>Feb 2022</td>
</tr>
<tr>
<td>NCT No.</td>
<td>Trial Name</td>
<td>Planned Enrollment</td>
<td>Completion Date</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>--------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>NCT04368806a</td>
<td>A 48-Weeks, Phase 2b/3a, Double-Blind, Randomized, Placebo Controlled, Multi-center, Superiority Study to Evaluate the Efficacy and Safety of JointStem, Autologous Adipose Tissue Derived Mesenchymal Stem Cells in Patients Diagnosed as Knee Osteoarthritis</td>
<td>140</td>
<td>Dec 2022</td>
</tr>
<tr>
<td>NCT02838069</td>
<td>A Phase IIb, Prospective, Multicentre, Double-blind, Triple-arm, Randomized Versus Placebo Trial, to Assess the Efficacy of a Single Injection of Either 2 or 10 x 10^6 Autologous Adipose Derived Mesenchymal Stromal Cells (ASC) in the Treatment of Mild to Moderate Osteoarthritis (OA) of the Knee, Active and Unresponsive to Conservative Therapy for at Least 12 Months</td>
<td>153</td>
<td>Jun 2023</td>
</tr>
<tr>
<td>NCT04448106a</td>
<td>Clinical Study for Subjects With Osteoarthritis of Knees, Hips, and Shoulders Using a Combination of Intravenous Infusions With Intra-articular Injection of Autologous Adipose Tissue-Derived Mesenchymal Stem Cells (AdMSCs)</td>
<td>300</td>
<td>Jan 2024</td>
</tr>
</tbody>
</table>

Unpublished

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT01413061a</td>
<td>Study of Subtalar Arthrodesis Using AlloStem® Versus Autologous Bone Graft</td>
<td>140</td>
<td>Mar 2018 (completed)</td>
</tr>
<tr>
<td>NCT01041001a</td>
<td>Randomized, Open-Label, Multi-Center and Phase 3 Clinical Trial to Compare the Efficacy and Safety of Cartistem® and Microfracture in Patients With Knee Articular Cartilage Injury or Defect</td>
<td>104</td>
<td>Jan 2011 (completed)</td>
</tr>
<tr>
<td>NCT01626677a</td>
<td>Long Term Follow-Up Study of CARTISTEM® Versus Microfracture for the Treatment of Knee</td>
<td>104</td>
<td>May 2015 (completed)</td>
</tr>
<tr>
<td>NCT01504464</td>
<td>Evaluation the Effects of Intra-articular Injection of Mesenchymal Stem Cells in Patients With Knee Joint Osteoarthritis, Triple Blind Randomized Clinical Trial</td>
<td>40</td>
<td>Oct 2015 (completed)</td>
</tr>
<tr>
<td>NCT03990805a</td>
<td>Multi-center, Randomized, Double-Blind, Placebo-Controlled Phase 3 Clinical Trial to Evaluate Efficacy and Safety of Mesenchymal Stem Cells JointStem in Patients With Knee Osteoarthritis</td>
<td>260</td>
<td>Nov 2020</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.

* Denotes industry-sponsored or cosponsored trial.
Practice Guidelines and Position Statements

American College of Rheumatology and Arthritis Foundation

In 2019, guidelines from the American College of Rheumatology and Arthritis Foundation on osteoarthritis (OA) of the hand, hip, and knee gave a strong recommendation against stem cell injections in patients with knee and/or hip OA, noting the heterogeneity in preparations and lack of standardization of techniques.25 No recommendation was made for hand OA, since efficacy of stem cells has not been evaluated.

American Association of Orthopaedic Surgeons

A 2020 guideline from American Association of Orthopaedic Surgeons on the management of glenohumeral joint OA, endorsed by several other societies, states that injectable biologics such as stem cells cannot be recommended in the treatment glenohumeral joint OA.26 There was consensus from the panel that better standardization and high-quality evidence from clinical trials is needed to provide definitive evidence on the efficacy of biologics in glenohumeral OA. The strength of evidence was rated as no reliable scientific evidence to determine benefits and harms.

The 2013 guideline on treatment of osteoarthritis of the knee does not address stem cell injections.26

American Association of Neurological Surgeons

In 2014, the American Association of Neurological Surgeons guidelines on fusion procedures for degenerative disease of the lumbar spine related to this evidence review have indicated that “The use of demineralized bone matrix (DBM) as a bone graft extender is an option for 1- and 2-level instrumented posterolateral fusions. Demineralized Bone Matrix: Grade C (poor level of evidence).”27

Medicare National Coverage

There is no national coverage determination.
Regulatory Status

The FDA regulates human cells and tissues intended for implantation, transplantation, or infusion through the Center for Biologics Evaluation and Research, under Code of Federal Regulation title 21, parts 1270 and 1271. MSCs are included in these regulations.

The regulatory status of the stem cell or stem cell-containing products addressed in this review is summarized below.

Concentrated autologous MSCs do not require approval by the FDA. No products using engineered or expanded MSCs have been approved by the FDA for orthopedic applications.

The following products are examples of commercialized demineralized bone matrix (DBM) products. They are marketed as containing viable stem cells. In some instances, manufacturers have received communications and inquiries from the FDA related to the appropriateness of their marketing products that are dependent on living cells for their function. The following descriptions are from the product literature.

- **Allostem®** (AlloSource) is a partially demineralized allograft bone seeded with adipose-derived MSCs.
- **Map3®** (RTI surgical) contains cortical cancellous bone chips, DBM, and cryopreserved multipotent adult progenitor cells (MAPC®).
- **Osteocel Plus®** (NuVasive) is a DBM combined with viable MSCs isolated from allogeneic bone marrow.
- **Trinity Evolution Matrix™** (Orthofix) DBM combined with viable MSCs isolated from allogeneic bone marrow.
- Other products contain DBM alone and are designed to be mixed with bone marrow aspirate:
 - Fusion Flex™ (Wright Medical) is dehydrated moldable DBM scaffold (strips and cubes) that will absorb autologous bone marrow aspirate.
 - Ignite® (Wright Medical) is an injectable graft with DBM that can be combined with autologous bone marrow aspirate.

A number of DBM combination products have been cleared for marketing by the FDA through the 510(k) process. FDA product code: MQV
Table 2 provides a representative sample of these products; some of which are specifically labeled for mixing with bone marrow aspirate.

Table 2. Demineralized Bone Matrix Products Cleared by FDA

<table>
<thead>
<tr>
<th>Product</th>
<th>Matrix Type</th>
<th>Mix with Autologous MSCs</th>
<th>Manufacturer or Sponsor</th>
<th>Date Cleared</th>
<th>510(k) No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitoss® Bioactive Foam Bone Graft Substitute</td>
<td>Type I bovine collagen</td>
<td>X</td>
<td>Stryker</td>
<td>Nov 2008</td>
<td>K083033</td>
</tr>
<tr>
<td>NanOss BVF-E</td>
<td>Nanocrystalline hydroxyapatite</td>
<td></td>
<td>Pioneer Surgical</td>
<td>Aug 2008</td>
<td></td>
</tr>
<tr>
<td>OrthoBlast® II Demineralized bone matrix putty and paste</td>
<td>Human cancellous bone chips</td>
<td></td>
<td>SeaSpine</td>
<td>Sep 2007</td>
<td>K070751</td>
</tr>
<tr>
<td>CopiOs® Bone Void Filler (sponge and powder disc)</td>
<td>Type I bovine dermal collagen</td>
<td>X</td>
<td>Kensey Nash</td>
<td>May 2007</td>
<td>K071237</td>
</tr>
<tr>
<td>DBX® Demineralized bone matrix putty, paste and mix</td>
<td>Processed human bone and sodium hyaluronate</td>
<td>X</td>
<td>Musculoskeletal Transplant Foundation</td>
<td>Dec 2006</td>
<td>K053218</td>
</tr>
<tr>
<td>Integra MOZAIK™ Osteoconductive Scaffold-Putty</td>
<td>Human cancellous bone</td>
<td>X</td>
<td>IsoTis OrthoBiologics</td>
<td>Dec 2006</td>
<td>K062353</td>
</tr>
<tr>
<td>Formagraft™ Collagen Bone Graft Matrix</td>
<td>Bovine fibrillary collagen</td>
<td>X</td>
<td>R and L Medical</td>
<td>May 2005</td>
<td>K050789</td>
</tr>
<tr>
<td>DynaGraft® II Gel and Putty</td>
<td>Processed human bone particles</td>
<td></td>
<td>IsoTis Orthobiologics</td>
<td>Mar 2005</td>
<td>K040419</td>
</tr>
</tbody>
</table>

FDA: Food and Drug Administration; MSCs: mesenchymal stem cells.

In 2020, the FDA published "Regulatory Considerations for Human Cells, Tissues, and Cellular and Tissue-Based Products: Minimal Manipulation and Homologous Use"²

Human cells, tissues, and cellular and tissue-based products (HCT/P) are defined as human cells or tissues that are intended for implantation, transplantation, infusion, or transfer into a human recipient. If an HCT/P does not meet the criteria below and does not qualify for any of the stated
exceptions, the HCT/P will be regulated as a drug, device, and/or biological product and applicable regulations and premarket review will be required.

An HCT/P is regulated solely under section 361 of the PHS Act and 21 CFR Part 1271 if it meets all of the following criteria:

- The HCT/P is minimally manipulated;
- The HCT/P is intended for homologous use only, as reflected by the labeling, advertising, or other indications of the manufacturer’s objective intent;
- The manufacture of the HCT/P does not involve the combination of the cells or tissues with another article, except for water, crystalloids, or a sterilizing, preserving, or storage agent, provided that the addition of water, crystalloids, or the sterilizing, preserving, or storage agent does not raise new clinical safety concerns with respect to the HCT/P; and
- Either:
 - The HCT/P does not have a systemic effect and is not dependent upon the metabolic activity of living cells for its primary function; or
 - The HCT/P has a systemic effect or is dependent upon the metabolic activity of living cells for its primary function, and: a) Is for autologous use; b) Is for allogeneic use in a first-degree or second-degree blood relative; or c) Is for reproductive use."

The FDA does not consider the use of stem cells for orthopedic procedures to be homologous use.

References

novel viable allogeneic, cancellous, bone matrix (trinity evolution) with a comparison to historical controls. Eur Spine J. Jul 2016; 25(7): 2233-8. PMID 26849141

History

<table>
<thead>
<tr>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/09/11</td>
<td>New policy; add to Therapy section. Policy created with literature review through January 2011; considered investigational. ICD-10 codes included in policy.</td>
</tr>
<tr>
<td>07/20/12</td>
<td>Replace policy. Policy updated with literature review through February 2012; reference 6 added and references reordered; policy statement unchanged.</td>
</tr>
<tr>
<td>08/15/12</td>
<td>Update Related Policies: remove 7.01.48, it was archived.</td>
</tr>
<tr>
<td>08/20/12</td>
<td>Update Related Policies – add 2.02.18.</td>
</tr>
<tr>
<td>10/09/12</td>
<td>Update Coding Section – ICD-10 codes are now effective 10/01/2014.</td>
</tr>
<tr>
<td>04/26/13</td>
<td>Clarification only. Statement within the Benefit Application section stating, “Therefore, requests may be made for an out-of-network facility” was removed, as this conflicts with the FDA statements in the rest of the policy. No other changes.</td>
</tr>
<tr>
<td>Date</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>06/10/13</td>
<td>Replace policy. New policy statement added that allograft bone containing viable stem cells is considered investigational. New policy guideline added that policy does not address unprocessed allograft bone. Regulatory status section updated regarding allograft bone. Rationale updated based on a literature review through March 2013. References 4, and 11-15 added; others renumbered or removed. Policy statement changed as noted.</td>
</tr>
<tr>
<td>08/20/13</td>
<td>Update Related Policies. Change title to 2.02.18.</td>
</tr>
<tr>
<td>06/19/14</td>
<td>Annual Review. Policy updated with literature review through March 3, 2014; references 5, 13, and 17 added; policy statements unchanged. ICD-10 codes removed in line with code mapping project and implementation delay.</td>
</tr>
<tr>
<td>06/09/15</td>
<td>Annual Review. Policy updated with literature review through February 26, 2015; references 3, 14, 16, 18, 20, and 22 added; investigational statement added on bone graft substitutes that must be used with autologous blood or bone marrow aspirate; title changed to “Orthopedic applications of stem cell therapy (including allograft and bone substitute products used with autologous bone marrow)”. Related policies removed: 2.02.18, 7.01.15 and 8.01.55. CPT code 20999 added to policy.</td>
</tr>
<tr>
<td>09/01/15</td>
<td>Update Related Policies. Add 2.01.98 and 7.01.149.</td>
</tr>
<tr>
<td>04/01/16</td>
<td>Annual Review, approved March 8, 2016. Policy updated with literature review through November 17, 2015; references 12 and 15 added. Policy statements unchanged. Title changed to “Orthopedic Applications of Stem Cell Therapy (Including Allografts and Bone Substitutes Used With Autologous Bone Marrow)”.</td>
</tr>
<tr>
<td>06/09/17</td>
<td>Coding update; updated description for CPT codes 38230 and 38241.</td>
</tr>
<tr>
<td>09/01/17</td>
<td>Annual Review, approved August 22, 2017. Policy updated with literature review through June 9, 2017; references 1, 4, 12-13, 25, and 27-29 were added. Policy statements unchanged.</td>
</tr>
<tr>
<td>05/01/18</td>
<td>Annual Review, approved April 3, 2018. Policy updated with literature review through November 2017; references 14 and 24 added; references 2 and 4 updated. Policy statements unchanged. Removed CPT code 38230.</td>
</tr>
<tr>
<td>04/01/19</td>
<td>Annual Review, approved March 19, 2019. Policy updated with literature review through November 2018; no references added. Policy statements unchanged.</td>
</tr>
<tr>
<td>08/01/20</td>
<td>Update related policies. 7.01.149 is now 7.01.583.</td>
</tr>
</tbody>
</table>
Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. The Company adopts policies after careful review of published peer-reviewed scientific literature, national guidelines and local standards of practice. Since medical technology is constantly changing, the Company reserves the right to review and update policies as appropriate. Member contracts differ in their benefits. Always consult the member benefit booklet or contact a member service representative to determine coverage for a specific medical service or supply. CPT codes, descriptions and materials are copyrighted by the American Medical Association (AMA). ©2021 Premera All Rights Reserved.

Scope: Medical policies are systematically developed guidelines that serve as a resource for Company staff when determining coverage for specific medical procedures, drugs or devices. Coverage for medical services is subject to the limits and conditions of the member benefit plan. Members and their providers should consult the member benefit booklet or contact a customer service representative to determine whether there are any benefit limitations applicable to this service or supply. This medical policy does not apply to Medicare Advantage.
Discrimination is Against the Law

Premera Blue Cross complies with applicable Federal civil rights laws and does not discriminate on the basis of race, color, national origin, age, disability, or sex. Premera does not exclude people or treat them differently because of race, color, national origin, age, disability or sex.

Premera:
• Provides free aids and services to people with disabilities to communicate effectively with us, such as:
 • Qualified sign language interpreters
 • Written information in other formats (large print, audio, accessible electronic formats, other formats)
• Provides free language services to people whose primary language is not English, such as:
 • Qualified interpreters
 • Information written in other languages

If you need these services, contact the Civil Rights Coordinator.

If you believe that Premera has failed to provide these services or discriminated in another way on the basis of race, color, national origin, age, disability, or sex, you can file a grievance:
Civil Rights Coordinator - Complaints and Appeals
PO Box 91102, Seattle, WA 98111
Toll free 855-332-4535, Fax 425-918-5592, TTY 800-842-5357
Email AppealsDepartmentInquiries@Premera.com

You can file a grievance in person or by mail, fax, or email. If you need help filing a grievance, the Civil Rights Coordinator is available to help you.

You can also file a civil rights complaint with the U.S. Department of Health and Human Services, Office for Civil Rights, electronically through the Office for Civil Rights Complaint Portal, available at https://ocrportal.hhs.gov/ocr/portal/lobby.jsf, or by mail or phone at:
U.S. Department of Health and Human Services
200 Independence Avenue SW, Room 509F, HHH Building
Washington, D.C. 20201, 1-800-368-1019, 800-537-7697 (TDD)

Getting Help in Other Languages

This Notice has Important Information. This notice may have important information about your application or coverage through Premera Blue Cross. There may be key dates in this notice. You may need to take action by certain deadlines to keep your health coverage or help with costs. You have the right to get this information and help in your language at no cost.
Call 800-722-1471 (TTY: 800-842-5357).

Arabic (Arabic):
يعتبر هذا الإشعار معلومة هامة. قد يحتوي هذا الإشعار معلومات مهمة بنصوص طالب أو العربية (Arabic):
Premera Blue Cross. هذه المعلومات تشير إلى الإشارة في هذا الإشعار. قد تحتاج لانتهاء الحرية في كتابة المعنى للحفاظ على تصميم الطلب أمل أو مادة
في نص الشفاه. يمكن أن يكون النص على هذه المعلومات والمساعدة بذلك دون تكرار أي صل.

800-722-1471 (TTY: 800-842-5357)

Deutsche (German):

Iloko (Ilocano):
Daytoy a Pakdaar ket naglaon iti Napateg nga Impormasion. Daytoy a pakdaar mabalay nga adda ket naglaon iti napateg nga impormasion maiagapgep iti aplikasyonyo wenn coverage babaen iti Premera Blue Cross. Daytoy ket mabalay dagitip importante a pensé iti daytoy a pakdaar. Mabalay nga adda rumbeng a aramidenyi nga addang sakyab dagitip partikular a naiting nga adda aldaw tapno mapagtaliheydo ti coverage ti salun-atyo wenno tulong kadagitip gastos. Adda karbenganyo a mangala iti daytoy nga impormasion ken tulong ti bukodyo a pagasayo nga awan ti bayadanyo. Tumawag ti numero nga 800-722-1471 (TTY: 800-842-5357).

Italiano (Italian):
This notification may contain important information. It is necessary to comply with certain terms and conditions set forth in this notification. For more information, please call Premera Blue Cross Customer Service at 800-722-1471 (TTY: 800-842-5357).

Premera Blue Cross (Chinese):

This notification contains important information. It is necessary to comply with certain terms and conditions set forth in this notification. For more information, please call Premera Blue Cross Customer Service at 800-722-1471 (TTY: 800-842-5357).

Premera Blue Cross (Japanese):

この通知には重要な情報が含まれています。この通知に、Premera Blue Crossの電話番号である800-722-1471（TTY: 800-842-5357）をご確認ください。