Introduction

An implantable ventricular assist device (VAD) is a battery operated mechanical pump that can help your heart pump blood out to the rest of your body. The VAD is surgically put in your body. It has a tube that pulls blood from the left ventricle (the main pumping chamber of the heart) and pumps the blood into the aorta (the main artery leaving the heart). The blood is then sent out to the rest of the body. Another device, called a total artificial heart (TAH), can be implanted in the chest to replace both of the lower pumping chambers in the heart. This policy identifies the criteria needed for a VAD or TAH to be covered as medically necessary.

Note: The Introduction section is for your general knowledge and is not to be taken as policy coverage criteria. The rest of the policy uses specific words and concepts familiar to medical professionals. It is intended for providers. A provider can be a person, such as a doctor, nurse, psychologist, or dentist. A provider also can be a place where medical care is given, like a hospital, clinic, or lab. This policy informs them about when a service may be covered.
<table>
<thead>
<tr>
<th>Device</th>
<th>Medical Necessity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge to Transplantation</td>
<td></td>
</tr>
</tbody>
</table>
| **Implantable ventricular assist devices (VADs)** | FDA approved ventricular assist devices (VADs) may be considered medically necessary as a bridge to heart transplantation for adult and pediatric patients:
 • Who are currently listed as heart transplantation candidates
 AND either:
 o Are not expected to survive until a donor heart can be obtained
 OR
 o Are undergoing evaluation to determine candidacy for heart transplantation |
| **Total artificial hearts (TAHs) with FDA-approval** | FDA-approved total artificial hearts (TAHs) implantation may be considered medically necessary as a bridge to heart transplantation for patients with ALL of the following:
 • Biventricular failure who have no other reasonable medical or surgical treatment options
 AND
 • They are ineligible for other univentricular or biventricular support devices
 AND
 • They are currently listed as heart transplantation candidates or are undergoing evaluation to determine candidacy for heart transplantation
 AND
 • They are not expected to survive until a donor heart can be obtained. |
| **Destination Therapy** | |
| **Implantable VADs with FDA approval or clearance** | FDA approved implantable VADs may be considered medically necessary as destination therapy for patients who meet ALL of the following:
 • They have end-stage heart failure patients
 AND
 • Who are ineligible for human heart transplant (see below)
 AND
 • Meet the following REMATCH Study criteria:
 o New York Heart Association class IV heart failure for ≥60 |
<table>
<thead>
<tr>
<th>Device</th>
<th>Medical Necessity</th>
</tr>
</thead>
</table>
| | days, or patients in New York Heart Association class III or IV for 28 days
| | o Received ≥14 days of support with intra-aortic balloon pump or dependent on intravenous inotropic agents
| | o 2 failed weaning attempts
| | **Additionally, patients must not be candidates for human heart transplant for one or more of the following reasons:**
| | • Age >65 years
| | OR
| | • Insulin-dependent diabetes with end-organ damage
| | OR
| | • Chronic renal failure (serum creatinine >2.5 mg/dL for ≥90 days)
| | OR
| | • Presence of other clinically significant condition. |

Postcardiotomy Setting/Bridge to Recovery

<table>
<thead>
<tr>
<th>Device</th>
<th>Investigational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implantable VADs with FDA approval</td>
<td>Implantable VADs with FDA approval may be considered medically necessary in the postcardiotomy setting in patients who are unable to be weaned off cardiopulmonary bypass.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>Investigational</th>
</tr>
</thead>
</table>
| Other applications of implantable VADs or TAHs | Other applications of implantable VADs or TAHs are considered investigational, including, but not limited to, the use of TAHs as destination therapy.
| | The use of non-FDA-approved implantable VADs or TAHs is considered investigational.
| | Percutaneous VADs are considered investigational for all indications. |

Coding
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td></td>
</tr>
<tr>
<td>0051T</td>
<td>Implantation of a total replacement heart system (artificial heart) with recipient cardiectomy (code terminated 1/1/18)</td>
</tr>
<tr>
<td>0052T</td>
<td>Replacement or repair of thoracic unit of a total replacement heart system (artificial heart) (code terminated 1/1/18)</td>
</tr>
<tr>
<td>0053T</td>
<td>Replacement or repair of implantable component or components of total replacement heart system (artificial heart) excluding thoracic unit (code terminated 1/1/18)</td>
</tr>
<tr>
<td>33990</td>
<td>Insertion of ventricular assist device, percutaneous including radiological supervision and interpretation; arterial access only</td>
</tr>
<tr>
<td>33991</td>
<td>Insertion of ventricular assist device, percutaneous including radiological supervision and interpretation; both arterial and venous access, with transseptal puncture</td>
</tr>
<tr>
<td>33992</td>
<td>Removal of percutaneous ventricular assist device at separate and distinct session from insertion</td>
</tr>
<tr>
<td>33993</td>
<td>Repositioning of percutaneous ventricular assist device with imaging guidance at separate and distinct session from insertion</td>
</tr>
<tr>
<td>33927</td>
<td>Implantation of a total replacement heart system (artificial heart) with recipient cardiectomy (new code effective 1/1/18)</td>
</tr>
<tr>
<td>33928</td>
<td>Removal and replacement of total replacement heart system (artificial heart) (new code effective 1/1/18)</td>
</tr>
<tr>
<td>33929</td>
<td>Removal of a total replacement heart system (artificial heart) for heart transplantation (List separately in addition to code for primary procedure) (new code effective 1/1/18)</td>
</tr>
</tbody>
</table>

Note: CPT codes, descriptions and materials are copyrighted by the American Medical Association (AMA). HCPCS codes, descriptions and materials are copyrighted by Centers for Medicare Services (CMS).

Related Information

Only 2 ventricular assist devices (VADs) have approval from the U.S. Food and Drug Administration for the pediatric population. The DeBakey VAD Child device and the Berlin Heart EXCOR Pediatric VAD have Food and Drug Administration approval through the humanitarian device exemption process. The DeBakey VAD is indicated for use in children ages 5 to 16 years who are awaiting a heart transplant (ie, a bridge to transplant) while the Berlin Heart EXCOR VAD is indicated for children with severe isolated left ventricular or biventricular dysfunction who are candidates for cardiac transplant and require circulatory support. See [Regulatory Status](#) and [Ongoing and Unpublished Clinical Trials](#) sections below.
Evidence Review

Description

A ventricular assist device (VAD) is a mechanical support attached to the native heart and vessels to augment cardiac output. The total artificial heart (TAH) replaces the native ventricles and is attached to the pulmonary artery and aorta; the native heart is typically removed. Both the VAD and TAH may be used as a bridge to heart transplantation or as destination therapy in those not candidates for transplantation. The VAD has also been used as a bridge to recovery in patients with reversible conditions affecting cardiac output.

Background

Heart Failure

Heart failure may be the consequence of a number of differing etiologies, including ischemic heart disease, cardiomyopathy, congenital heart defects, or rejection of a heart transplant. The reduction of cardiac output is considered to be severe when systemic circulation cannot meet the body’s needs under minimal exertion. Heart transplantation improves quality of life and has survival rates at 1, 5, and 10 years of 88%, 74%, and 55%, respectively. The number of candidates for transplants exceeds supply of donor organs; thus the interest in the development of mechanical devices.

Treatment

Total Artificial Hearts

Initial research into mechanical assistance for the heart focused on the total artificial heart (TAH), a biventricular device that completely replaces the function of the diseased heart. An internal battery required frequent recharging from an external power source. Many systems use a percutaneous power line, but a transcutaneous power-transfer coil allows for a system without lines traversing the skin, possibly reducing the risk of infection. Because the native heart must be removed, failure of the device is synonymous with cardiac death.
A fully bioprosthetic TAH, which is fully implanted in the pericardial sac and is electrohydraulically actuated, has been developed and tested in 2 patients but is currently experimental.²

Ventricular Assist Devices

Implantable ventricular assist devices (VADs) are attached to the native heart, which may have enough residual capacity to withstand a device failure in the short term. In reversible heart failure conditions, the native heart may regain some function, and weaning and explanting of the mechanical support system after months of use has been described. VADs can be classified as internal or external, electrically or pneumatically powered, and pulsatile or continuous-flow. Initial devices were pulsatile, mimicking the action of a beating heart. More recent devices may use a pump, which provides continuous-flow. Continuous devices may move blood in rotary or axial flow.

At least 1 VAD system developed is miniaturized and generates an artificial pulse, the HeartMate 3 Left Ventricular Assist System.³

Surgically implanted VADs represent a method of providing mechanical circulatory support for patients not expected to survive until a donor heart becomes available for transplant or for whom transplantation is contraindicated or unavailable. VADs are most commonly used to support the left ventricle, but right ventricular and biventricular devices may be used. The device is larger than most native hearts, and therefore the size of the patient is an important consideration. The pump may be implanted in the thorax or abdomen, or remain external to the body. Inflow to the device is attached to the apex of the failed ventricle, while outflow is attached to the corresponding great artery (aorta for left ventricle, pulmonary artery for right ventricle). A small portion of ventricular wall is removed for insertion of the outflow tube; extensive cardiotomy affecting the ventricular wall may preclude VAD use.

Percutaneous VADs

Devices in which most of the system’s components are external to the body are for short-term use (6 hours to 14 days) only, due to the increased risk of infection and need for careful, in-hospital monitoring. Some circulatory assist devices are placed percutaneously (ie, are not implanted). They may be referred to as percutaneous VADs (pVADs). A pVAD is placed through the femoral artery. Two different pVADs have been developed, the TandemHeart and the Impella device. In the TandemHeart system, a catheter is introduced through the femoral vein.
and passed into the left atrium via transseptal puncture. Oxygenated blood is then pumped from the left atrium into the arterial system via the femoral artery. The Impella device is introduced through a femoral artery catheter. In this device, a small pump is contained within the catheter placed into the left ventricle. Blood is pumped from the left ventricle, through the device, and into the ascending aorta. Adverse events associated with pVAD include access-site complications such as bleeding, aneurysms, or leg ischemia. Cardiovascular complications can also occur, such as perforation, myocardial infarction, stroke, and arrhythmias.

There are several situations in which pVADs may be beneficial: (1) cardiogenic shock that is refractory to medications and intra-aortic balloon pump, (2) cardiogenic shock as an alternative to intra-aortic balloon pump, and (3) invasive cardiac procedures in high-risk patients who need circulatory support.

Intra-aortic balloon pumps are outside the scope of this evidence review.

Summary of Evidence

Ventricular Assist Device

For individuals who have end-stage heart failure who receive a VAD as a bridge to transplant, the evidence includes single-arm trials and observational studies. Relevant outcomes are overall survival, symptoms, functional outcomes, QOL, and treatment-related mortality and morbidity. There is a substantial body of evidence from clinical trials and observational studies supporting implantable VADs as a bridge to transplant in patients with end-stage heart failure, possibly improving mortality as well as QOL. These studies have reported that substantial numbers of patients have survived to transplant in situations in which survival would not be otherwise expected. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have end-stage heart failure who receive a VAD as destination therapy, the evidence includes a trial and multiple single-arm studies. Relevant outcomes are overall survival, symptoms, functional outcomes, QOL, and treatment-related mortality and morbidity. A well-designed trial, with 2 years of follow-up data, has demonstrated an advantage of implantable VADs as destination therapy for patients ineligible for heart transplant. Despite an increase in adverse events, both mortality and QOL appear to be improved for these patients. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.
Total Artificial Heart

For individuals who have end-stage heart failure who receive a TAH as a bridge to transplant, the evidence includes case series. Relevant outcomes are overall survival, symptoms, functional outcomes, QOL, and treatment-related mortality and morbidity. Compared with VADs, the evidence for TAHs in these settings is less robust. However, based on the lack of medical or surgical options for these patients and the evidence case series provide, TAH is likely to improve outcomes for a carefully selected population with end-stage biventricular heart failure awaiting transplant who are not appropriate candidates for a left VAD. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have end-stage heart failure who receive a TAH as destination therapy, the evidence includes 2 case series. Relevant outcomes are overall survival, symptoms, functional outcomes, QOL, and treatment-related mortality and morbidity. The body of evidence for TAHs as destination therapy is too limited to draw conclusions. The evidence is insufficient to determine the effects of the technology on health outcomes.

Percutaneous Ventricular Assist Device

For individuals with cardiogenic shock or who undergo high-risk cardiac procedures who receive a pVAD, the evidence includes randomized controlled trials. Relevant outcomes are overall survival, symptoms, morbid events, functional outcomes, QOL, and treatment-related mortality and morbidity. Four randomized controlled trials of pVAD vs IABP for patients in cardiogenic shock failed to demonstrate a mortality benefit and reported higher complication rates associated with pVAD use. Another randomized controlled trial comparing pVAD with IABP as an adjunct to high-risk percutaneous coronary interventions was terminated early due to futility; analysis of enrolled subjects did not demonstrate significant improvements in the pVAD group. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with cardiogenic shock refractory to IABP who receive a pVAD, the evidence includes case series. Relevant outcomes are overall survival, symptoms, morbid events, functional outcomes, QOL, and treatment-related mortality and morbidity. Case series of patients with cardiogenic shock refractory to IABP have reported improved hemodynamic parameters following pVAD placement. However, these uncontrolled series do not provide evidence that pVADs improve mortality, and high rates of complications have been reported with pVAD use. The evidence is insufficient to determine the effects of the technology on health outcomes.
Ongoing and Unpublished Clinical Trials

Some currently unpublished trials that might influence this review are listed in Table 1.

Table 1. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT02326402</td>
<td>THEME Registry: TandemHeart Experiences and Methods</td>
<td>200</td>
<td>Dec 2017</td>
</tr>
<tr>
<td>NCT01774656a</td>
<td>Remission From Stage D Heart Failure (RESTAGE-HF)</td>
<td>40</td>
<td>Dec 2017</td>
</tr>
<tr>
<td>NCT01627821a</td>
<td>Evaluation of the Jarvik 2000 Left Ventricular Assist System With Post-Auricular Connector--Destination Therapy Study</td>
<td>350</td>
<td>Dec 2018</td>
</tr>
<tr>
<td>NCT01369407</td>
<td>REVIVE-IT Registry (REVIVAL: Registry Evaluation of Vital Information For VADs in Ambulatory Life)</td>
<td>400</td>
<td>Jun 2019</td>
</tr>
<tr>
<td>NCT02459054</td>
<td>SynCardia 50cc Temporary Total Artificial Heart (TAH-t) as a Bridge to Transplant</td>
<td>72</td>
<td>Jun 2020</td>
</tr>
<tr>
<td>NCT02232659</td>
<td>SynCardia 70cc Temporary Total Artificial Heart (TAH-t) for Destination Therapy (DT)</td>
<td>38</td>
<td>Dec 2020</td>
</tr>
<tr>
<td>NCT02387112</td>
<td>Early Versus Emergency Left Ventricular Assist Device Implantation in Patients Awaiting Cardiac Transplantation</td>
<td>500</td>
<td>Dec 2022</td>
</tr>
<tr>
<td>Unpublished</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT01966458a</td>
<td>A Prospective, Randomized, Controlled, Unblinded, Multi-Center Clinical Trial to Evaluate the HeartWare® Ventricular Assist Device System for Destination Therapy of Advanced Heart Failure</td>
<td>465</td>
<td>Aug 2016</td>
</tr>
<tr>
<td>NCT01187368a</td>
<td>A Prospective Study to Evaluate the Safety and Efficacy of the EVAHEART LVAS for Use as a Bridge-to-Transplant</td>
<td>20</td>
<td>Jun 2017 (suspended)</td>
</tr>
<tr>
<td>NCT02468778</td>
<td>Supporting Patients Undergoing High-Risk PCI Using a High-Flow PErcutaneous Left Ventricular Support Device (SHIELD II)</td>
<td>425</td>
<td>Jan 2018 (suspended)</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.

a Denotes industry-sponsored or cosponsored trial.
Clinical Input Received from Physician Specialty Societies and Academic Medical Centers

While the various physician specialty societies and academic medical centers may provide appropriate reviewers who collaborate with and make recommendations during this process, input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted.

In response to requests, input was received from 2 physician specialty societies and 5 academic medical centers while this policy was under review in 2014. Vetting focused on the use of percutaneous ventricular assist devices (pVADs) under the American Heart Association and American College of Cardiology guidelines (2013) and on the use of total artificial heart as destination therapy. All providing input supported the use of implantable ventricular assist devices as destination therapy subject to the guidelines in the policy statements. Most providing input considered total artificial hearts to be investigational for destination therapy; reviewers noted that there are limited clinical trial data to support the use of total artificial hearts as destination therapy.

Most providing input considered pVADs to be investigational as a “bridge to recovery” or “bridge to decision” and for all other indications. Some reviewers noted that pVADs may improve patients’ hemodynamics better than other alternatives, such as an intra-aortic balloon pump, but are associated with more complications. Some noted that, despite a lack of evidence to indicate that pVADs improve overall outcomes, there may be cases when pVADs may be considered to support an intervention or treatment for a life-threatening condition.

Practice Guidelines and Position Statements

Society for Cardiovascular Angiography and Interventions et al

In 2015, the Society for Cardiovascular Angiography and Interventions, the Heart Failure Society of America, the Society of Thoracic Surgeons, and the American College of Cardiology published a joint clinical expert consensus statement on the use of percutaneous mechanical circulatory support (MCS) devices in cardiovascular care. This statement addressed intra-aortic balloon pumps, left atrial-to-aorta assist device (eg, TandemHeart), left ventricle-to-aorta assist devices (eg, Impella), extracorporeal membrane oxygenation, and methods of right-sided support. Specific recommendations were not made, but the statement reviews the use of MCS in patients undergoing high-risk percutaneous intervention, those with cardiogenic shock, and those with acute decompensated heart failure.
The American College of Cardiology/American Heart Association (ACC/AHA)

The American College of Cardiology Foundation and American Heart Association (ACCF/AHA) released guidelines for the management of heart failure in October 2013 that included recommendations related to the use of mechanical circulatory support (MCS), including both durable and nondurable MCS devices. The guidelines categorize pVADs and extracorporeal VADs as nondurable MCS devices. The following class IIA guidelines were made related to MCS devices:

- MCS is beneficial in carefully selected patients with stage D heart failure with reduced ejection fraction (HFrEF) in whom definitive management (eg, cardiac transplantation) or cardiac recovery is anticipated or planned. (Level of Evidence: B)

- Nondurable MCS, including the use of percutaneous and extracorporeal VADs, is reasonable as a “bridge to recovery” or “bridge to decision” for carefully selected patients with HFrEF with acute, profound hemodynamic compromise. (Level of Evidence: B)

- Durable MCS is reasonable to prolong survival for carefully selected patients with stage D HFrEF. (Level of Evidence: B)

The 2003 AHA/ACC guidelines note: “Although optimal patient selection for MCS remains an active area of investigation, general indications for referral for MCS therapy include patients with LVEF <25% and NYHA Class III–IV functional status despite GDMT, including, when indicated, CRT, with either high predicted 1- to 2-year mortality (eg, as suggested by markedly reduced peak oxygen consumption and clinical prognostic scores) or dependence on continuous parenteral inotropic support. Patient selection requires a multidisciplinary team of experienced advanced HF and transplantation cardiologists, cardiothoracic surgeons, nurses, and ideally, social workers and palliative care clinicians.”

In 2012, AHA published recommendations for the use of MCS. These guidelines define nondurable MCS as intraballoon pumps, extracorporeal membrane oxygenation, extracorporeal VADs, and pVADs. The following recommendations were made regarding indications for use of MCS, including durable and nondurable devices:
Table 2. 2012 Guidelines on MCS

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>COE</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>“MCS for BTT indication should be considered for transplant-eligible patients with end-stage HF who are failing optimal medical, surgical, and/or device therapies and at high risk of dying before receiving a heart transplantation.”</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>“Implantation of MCS in patients before the development of advanced HF ... is associated with better outcomes. Therefore, early referral of HF patients is reasonable.”</td>
<td>IIA</td>
<td>B</td>
</tr>
<tr>
<td>“MCS with a durable, implantable device for permanent therapy or DT is beneficial for patients with advanced HF, high 1-year mortality resulting from HF, and the absence of other life-limiting organ dysfunction; who are failing medical, surgical, and/or device therapies; and who are ineligible for heart transplantation.”</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>“Elective rather than urgent implantation of DT can be beneficial when performed after optimization of medical therapy in advanced HF patients who are failing medical, surgical, and/or device therapies.”</td>
<td>IIA</td>
<td>C</td>
</tr>
<tr>
<td>“Urgent nondurable MCS is reasonable in hemodynamically compromised HF patients with end-organ dysfunction and/or relative contraindications to heart transplantation/durable MCS that are expected to improve with time and restoration of an improved hemodynamic profile.”</td>
<td>IIAI</td>
<td>CC</td>
</tr>
<tr>
<td>“These patients should be referred to a center with expertise in the management of durable MCS and patients with advanced HF.”</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>“Patients who are ineligible for heart transplantation because of pulmonary hypertension related to HF alone should be considered for bridge to potential transplant eligibility with durable, long-term MCS.”</td>
<td>IIA</td>
<td>B</td>
</tr>
</tbody>
</table>

BTT: bridge to transplant; COE: class of evidence; DT: destination therapy; HF: heart failure; LOE: level of evidence; MCS: mechanical circulatory support.

The Heart Failure Society of America (HFSA)

The Heart Failure Society of America published guidelines in 2010 on surgical approaches to the treatment of heart failure. Table 3 lists recommendations on left VADs:

Table 3. Guidelines on Left Ventricular Assist Devices

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>SOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients awaiting heart transplantation who have become refractory to all means of medical circulatory support should be considered for a mechanical support device as a bridge to transplant.”</td>
<td>B</td>
</tr>
<tr>
<td>“Permanent mechanical assistance using an implantable assist device may be considered in highly selected</td>
<td>B</td>
</tr>
</tbody>
</table>
Recommendation | SOE
--- | ---
Patients with severe HF refractory to conventional therapy who are not candidates for heart transplantation, particularly those who cannot be weaned from intravenous inotropic support at an experienced HF center. | C

"Patients with refractory HF and hemodynamic instability, and/or compromised end-organ function, with relative contraindications to cardiac transplantation or permanent mechanical circulatory assistance expected to improve with time or restoration of an improved hemodynamic profile should be considered for urgent mechanical circulatory support as a 'bridge to decision.' These patients should be referred to a center with expertise in the management of patients with advanced HF."

HF: heart failure; SOE: strength of evidence.

The European Society of Cardiology (ESC)

In 2016, the European Society of Cardiology issued guidelines on the diagnosis and treatment of acute and chronic heart failure, which updated its guidelines published in 2008, 2010, and 2012. These 2016 guidelines made the following recommendations on VADs (see Table 4).

Table 4. Guidelines on Left Ventricular Assist Devices

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>COE</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVAD should be considered as a bridge to transplant in refractory heart failure</td>
<td>IIA</td>
<td>C</td>
</tr>
<tr>
<td>LVAD should be considered as destination therapy in refractory heart failure</td>
<td>IIA</td>
<td>B</td>
</tr>
</tbody>
</table>

COE: class of evidence; LOE: level of evidence; LVAD: left ventricular assist device.

The guidelines also stated that “…temporary percutaneous MCS cannot be recommended as a proven or efficacious treatment for acute cardiogenic shock. In selected patients it may serve as a bridge to definite therapy.”

International Society for Heart and Lung Transplantation

The 2013 guidelines on MCS by the International Society for Heart and Lung Transplantation recommended that, for patients with decompensated heart failure, “Short term mechanical support, including extracorporeal membrane oxygenation should be used in acutely decompensated patients who are failing maximal medical therapy” (level of evidence: C). The guidelines also stated that “use of temporary mechanical support should be strongly considered in patients with multiorgan failure, sepsis, or on mechanical ventilation to allow for successful
optimization of clinical status and neurologic assessment prior to placement of a long-term MCSD [mechanical circulatory support device]” (level of evidence: C).

Medicare National Coverage

Medicare has a national coverage determination (NCD) for artificial hearts and related devices, including VADS.95 The national coverage policy mandates coverage for VADs in the post-cardiotomy setting as long as the following conditions are met:

- The VAD has approval from the FDA for post-cardiotomy support.
- The VAD is used according to the FDA-approved labeling instructions.

The national coverage policy also mandates coverage for VADs as a bridge-to-transplant as long as the following conditions are met:

- The VAD has approval from the FDA for the bridge-to-transplant indication.
- The VAD is used according to the FDA-approved labeling instructions.
- The patient is approved and listed as a candidate for heart transplantation by a Medicare-approved heart transplant center.
- The implanting site, if different than the Medicare-approved transplant center, must receive written permission from the Medicare-approved heart transplant center under which the patient is listed prior to implantation of the VAD.

The national coverage policy mandates coverage for VADs as destination therapy as long as the following conditions are met:

- The VAD has approval from the FDA for the destination therapy indication.
 - Patient selection:
 - New York Heart Association Class IV end-stage left ventricular failure
 - Not candidates for heart transplantation
 - Failed to respond to optimal medical management,
 - Left ventricular ejection fraction (LVEF) <25%, and,
 - Demonstrated functional limitation
Beneficiaries receiving VADs for DT must be managed by an explicitly identified cohesive, multidisciplinary team of medical professionals with the appropriate qualifications, training, and experience. The team members must be based at the facility and must include individuals with experience working with patients before and after placement of a VAD.

Facilities must be credentialed by an organization approved by the Centers for Medicare & Medicaid Services.

The NCD mandates coverage for artificial hearts as bridge to transplant or destination therapy when performed under coverage with evidence development when a clinical study meets the criteria outlined in the Medicare policy.

Regulatory Status

A number of mechanical circulatory support devices have been approved or cleared for marketing by the U.S. Food and Drug Administration (FDA). These devices are summarized in Table 5.

Table 5. Available Mechanical Circulatory Support Devices

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Date of Initial Approval</th>
<th>Method of FDA Clearance</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>VADs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thoratec® IVAD</td>
<td>Thoratec</td>
<td>Aug 2004</td>
<td>PMA supplement</td>
<td>Bridge to transplant and postcardiotomy</td>
</tr>
<tr>
<td>DeBakey VAD® Child</td>
<td>MicroMed</td>
<td>Feb 2004</td>
<td>HDE</td>
<td>Bridge to transplant in children 5-16 y of age</td>
</tr>
<tr>
<td>HeartMate II®</td>
<td>Thoratec</td>
<td>Apr 2008</td>
<td>PMA</td>
<td>Bridge to transplant and destination</td>
</tr>
<tr>
<td>CentriMag®</td>
<td>Levitronix (now Thoratec)</td>
<td>Oct 2008</td>
<td>HDE</td>
<td>Postcardiotomy</td>
</tr>
<tr>
<td>Berlin Heart EXCOR® Pediatric VAD</td>
<td>Berlin</td>
<td>Dec 2011</td>
<td>HDE</td>
<td>Bridge to transplant</td>
</tr>
<tr>
<td>HeartWare® Ventricular Assist System</td>
<td>HeartWare</td>
<td>Dec 2012</td>
<td>PMA</td>
<td>Bridge to transplant</td>
</tr>
<tr>
<td>Device</td>
<td>Manufacturer</td>
<td>Date of Initial Approval</td>
<td>Method of FDA Clearance</td>
<td>Indication</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>-------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>pVADs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impella®</td>
<td>Abiomed</td>
<td>May 2008</td>
<td>510(k)</td>
<td>Partial circulatory support using extracorporeal bypass control unit for ≤6 h</td>
</tr>
<tr>
<td>TandemHeart®</td>
<td>Cardiac Assist</td>
<td>Sep 2005</td>
<td>510(k)</td>
<td>Temporary left ventricular bypass of ≤6 h</td>
</tr>
</tbody>
</table>

FDA: U.S. Food and Drug Administration; HDE: humanitarian device exemption; PMA: premarket approval; pVAD: percutaneous ventricular assist devices; VAD: ventricular assist devices.

Total Artificial Heart

In October 2004, the temporary CardioWest™ Total Artificial Heart (SynCardia Systems, Tucson, AZ) was approved by the FDA through the premarket approval (PMA) process for use as a bridge to transplant in cardiac transplant-eligible candidates at risk of imminent death from biventricular failure. This device is also intended for use inside the hospital. In April 2010, the FDA approved a name change to SynCardia Temporary Total Artificial Heart. FDA product code: LOZ.

In September 2006, the AbioCor® Implantable Replacement Heart System (Abiomed, Danvers, MA) was approved by the FDA through the humanitarian device exemption (HDE) process for use in severe biventricular end-stage heart disease patients who are not cardiac transplant candidates and who:

- Are younger than 75 years of age;
- Require multiple inotropic support;
- Are not treatable by left VAD destination therapy; and
- Are not weanable from biventricular support if on such support.

In addition to meeting other criteria, patients who are candidates for the AbioCor® TAH must undergo a screening process to determine if their chest volume is large enough to hold the device. The device is too large for approximately 90% of women and for many men. FDA HDE: H040006.
Ventricular Assist Devices

In December 1995, the Thoratec® Ventricular Assist Device System (Thoratec Corp., Pleasanton, CA) was approved by the FDA through the PMA process for use as a bridge to transplantation in patients suffering from end-stage heart failure. The patient should meet all of the following criteria:

- Candidate for cardiac transplantation,
- Imminent risk of dying before donor heart procurement, and
- Dependence on, or incomplete response to, continuous vasopressor support.

In May 1998, supplemental approval for this device was given for the indication for postcardiotomy patients unable to be weaned from cardiopulmonary bypass. In June 2001, supplemental approval was given for a portable external driver to permit excursions within a 2-hour travel radius of the hospital when accompanied by a trained caregiver. In November 2003, supplemental approval was given to market the device as Thoratec® Paracorporeal VAD. In August 2004, supplemental approval was given to a modified device to be marketed as the Thoratec® Implantable VAD for the same indications. In January 2008, supplemental approval was given to rescind Paracorporeal VAD use.

In February 2004, the DeBakey VAD® Child pump was approved by the FDA through the HDE process for both home and hospital use for children between the ages of 5 and 16 years who have end-stage ventricular failure requiring temporary mechanical blood circulation until a heart transplant is performed.

In April 2008, the continuous-flow HeartMate® II LVAS device (Thoratec, Pleasanton, CA) was approved by the FDA through the PMA process for use as a bridge to transplantation in cardiac transplant candidates at risk of imminent death from nonreversible left ventricular failure. The HeartMate® II LVAS device is intended for use both inside and outside the hospital. In January 2010, the device received the added indication as destination therapy for use in patients with New York Heart Association class IIIB or IV end-stage left ventricular failure who have received optimal medical therapy for at least 45 of the last 60 days and are not candidates for cardiac transplantation.

In October 2008, device CentriMag® Right Ventricular Assist Device (Levitronix, Zurich) was approved by the FDA under the HDE process to provide temporary circulatory support for up to 14 days for patients in cardiogenic shock due to acute right-sided heart failure.
In December 2011, the Berlin Heart EXCOR® Pediatric VAD was approved by the FDA under the HDE for pediatric patients with severe isolated left ventricular or biventricular dysfunction who are candidates for cardiac transplant and require circulatory support.

In December 2012, the FDA approved the HeartWare® Ventricular Assist System (HeartWare, Miami Lakes, FL) through the PMA process. The device is approved as a bridge to cardiac transplantation in patients at risk for death from refractory end-stage left ventricular heart failure.

FDA product code: DSQ.

Percutaneous VADs (Circulatory Assist Devices)

In May 2008, the Impella® Recover LP 2.5 Percutaneous Cardiac Support System (Abiomed, Aachen, Germany) was cleared for marketing by the FDA through the 510(k) process for short-term (<6 hours) use in patients requiring circulatory support.

In March 2015, the Impella 2.5 System received approval through the PMA process for temporary ventricular support during high-risk percutaneous coronary interventions.

The TandemHeart® (Cardiac Assist, Pittsburgh) received a similar 510(k) approval for short-term circulatory support in September 2005. FDA product code: KFM.

Several other devices are in clinical trials or awaiting FDA review.

References

41. TEC Assessment Program. Left ventricular assist devices as destination therapy for end-stage heart failure. 2002;Volume 17;Tab 19.

44. Long JW, Kfoury AG, Slaughter MS, et al. Long-term destination therapy with the HeartMate XVE left ventricular assist device: improved outcomes since the REMATCH study. Congest Heart Fail. May-Jun 2005;11(3):133-138. PMID 15947534

64. Torregrossa G, Morshuis M, Varghese R, et al. Results with SynCardia total artificial heart beyond 1 year. ASAIO J. Nov-Dec 2014;60(6):626-634. PMID 25158888

<table>
<thead>
<tr>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/14/98</td>
<td>Add to Surgery Section - New Policy</td>
</tr>
<tr>
<td>06/01/99</td>
<td>Replace policy - Policy updated to include new FDA-approved devices.</td>
</tr>
<tr>
<td>06/27/00</td>
<td>Replace policy - Scheduled review; no criteria changes.</td>
</tr>
<tr>
<td>11/12/02</td>
<td>Replace policy - Policy reviewed: Rationale section expanded, references added. Policy statement on use of VADs in patients who are not transplant candidates deleted; this topic will be addressed in a separate policy. Policy statement otherwise unchanged.</td>
</tr>
<tr>
<td>04/15/03</td>
<td>Replace policy - Policy statement revised to include 2002 TEC Assessment conclusions regarding VADs in patients who are not transplant candidates, ie, "destination" therapy. Title changed from Ventricular Assist Devices as a Bridge to Heart Transplantation.</td>
</tr>
<tr>
<td>10/16/03</td>
<td>Replace policy - Policy statement revised to limit medically necessary indications to FDA approved devices.</td>
</tr>
<tr>
<td>02/10/04</td>
<td>Replace policy - Policy statement added regarding investigational status of total artificial hearts. Additional 2003 Category III CPT codes added.</td>
</tr>
<tr>
<td>06/14/05</td>
<td>Replace policy - Policy statement revised to indicate that a total artificial heart may be considered medically necessary as a bridge to transplant, based on FDA approval for that indication.</td>
</tr>
<tr>
<td>04/21/06</td>
<td>Codes Updated - No other changes</td>
</tr>
<tr>
<td>05/26/06</td>
<td>Scope and Disclaimer Updates - No other changes.</td>
</tr>
<tr>
<td>07/11/06</td>
<td>Replace policy - Policy updated with literature review; references added; policy statement unchanged.</td>
</tr>
<tr>
<td>11/14/06</td>
<td>Replace policy - Policy updated with FDA approval of total artificial heart. Policy statement unchanged; total artificial hearts are investigational. References added.</td>
</tr>
<tr>
<td>12/11/06</td>
<td>Codes Updated - No other changes</td>
</tr>
<tr>
<td>10/14/08</td>
<td>Replace policy - Policy updated with literature search; no change to the policy statement. Codes 37.52-37.66 added, references added.</td>
</tr>
<tr>
<td>10/13/09</td>
<td>Replace policy - Policy updated with literature search; no change to the policy statement. References added.</td>
</tr>
<tr>
<td>02/09/10</td>
<td>Codes Update - New 2010 codes added.</td>
</tr>
<tr>
<td>11/09/10</td>
<td>Replace policy - Policy updated with literature search; references 1, 10, 19, 29 and 30 added. Extensive editing completed. Policy statements revised to address only implantable VADs and total artificial hearts.</td>
</tr>
<tr>
<td>Date</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>10/11/11</td>
<td>Replace policy – Policy updated with literature search. Percutaneous VADs, previously not addressed, added to policy statement as investigational. Rationale updated. References 22, 30-39, 42, 43 added. ICD-10 codes added to policy.</td>
</tr>
<tr>
<td>11/27/12</td>
<td>Replace policy - Policy updated with literature search. References 18, 27-31, 33, 40, 47. Clause added to policy statement on TAH that says “…or are undergoing evaluation to determine candidacy for heart transplantation…”</td>
</tr>
<tr>
<td>01/10/13</td>
<td>Coding update. CPT codes 0148T – 0150T deleted as of 12/31/12; codes 33990 – 33991 and 33993, effective 1/1/13, added to policy.</td>
</tr>
<tr>
<td>04/08/13</td>
<td>Replace policy. Policy statement on children amended; age range changed from 5-16 to 0-16, reflecting the approval of the BERLIN heart EXCOR device for pediatric patients aged 0-16. Code Q0505, deleted 3/13/13; this is replaced with Q0507-Q0509, new codes 4/1/13.</td>
</tr>
<tr>
<td>03/11/14</td>
<td>Coding Update. Codes 37.52 - 37.55, 37.60, and 37.62 - 37.66 were removed per ICD-10 mapping project; these codes are not utilized for adjudication of policy.</td>
</tr>
<tr>
<td>07/31/14</td>
<td>Annual Review. Policy updated with literature review through January, 2014 and results of clinical vetting related to the use of pVADs and the total artificial heart (TAH) as destination therapy. References 5, 6, 20, 23, 24, 27, 55 added; others renumbered/removed. Policy statements unchanged.</td>
</tr>
<tr>
<td>07/14/15</td>
<td>Annual Review. Policy updated with literature review through April 21, 2015; references 7-8, 27, 32, 38, 41, 50, 55, 57, 61-62, 65-66, and 70 added. Policy statements unchanged. Coding update: CPT codes 33977, 33978, 33980, 33981, 33982, 33983 and 93750, plus HCPCS Q0506 removed; they were informational only.</td>
</tr>
<tr>
<td>11/01/16</td>
<td>Annual Review, approved October 11, 2016. Policy revised to remove all information regarding total artificial hearts and implantable ventricular assist devices, including removing previous references 1-56 and policy title change. Policy now addresses only percutaneous ventricular assist devices. Policy updated with literature review but no change to the policy statement regarding pVADs, which remain investigational.</td>
</tr>
<tr>
<td>11/01/17</td>
<td>Annual review approved October 10, 2017. Policy updated with literature review through July 22, 2017; references 5-7, 34, 47, 49-51, 70, 72, 83, 85, 88, and 93 added. Policy statements revised to add information regarding total artificial hearts and implantable ventricular assist devices. Codes updated; removed 33999 and added 0051T, 0052T, and 0053T.</td>
</tr>
<tr>
<td>03/03/18</td>
<td>Coding update; added not that CPT codes 0051T, 0052T, and 0053T were terminated 1/1/18. Added new CPT codes 33927, 33928, and 33929 (new codes effective 1/1/18).</td>
</tr>
</tbody>
</table>

Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. The Company adopts policies after careful review of published peer-reviewed scientific literature, national guidelines and local standards of practice. Since medical technology is constantly changing, the Company reserves the right to review and update policies as appropriate. Member contracts differ in their benefits. Always consult the member benefit.
booklet or contact a member service representative to determine coverage for a specific medical service or supply. CPT codes, descriptions and materials are copyrighted by the American Medical Association (AMA). ©2018 Premera All Rights Reserved.

Scope: Medical policies are systematically developed guidelines that serve as a resource for Company staff when determining coverage for specific medical procedures, drugs or devices. Coverage for medical services is subject to the limits and conditions of the member benefit plan. Members and their providers should consult the member benefit booklet or contact a customer service representative to determine whether there are any benefit limitations applicable to this service or supply. This medical policy does not apply to Medicare Advantage.
Discrimination is Against the Law

Premera Blue Cross complies with applicable Federal civil rights laws and does not discriminate on the basis of race, color, national origin, age, disability, or sex. Premera does not exclude people or treat them differently because of race, color, national origin, age, disability or sex.

Premera:
- Provides free aids and services to people with disabilities to communicate effectively with us, such as:
 - Qualified sign language interpreters
 - Written information in other formats (large print, audio, accessible electronic formats, other formats)
- Provides free language services to people whose primary language is not English, such as:
 - Qualified interpreters
 - Information written in other languages

If you need these services, contact the Civil Rights Coordinator.

If you believe that Premera has failed to provide these services or discriminated in another way on the basis of race, color, national origin, age, disability, or sex, you can file a grievance:
Civil Rights Coordinator - Complaints and Appeals
PO Box 91102, Seattle, WA 98111
Toll free 855-332-4535, Fax 425-918-5592, TTY 800-842-5357
Email AppealsDepartmentInquiries@Premera.com

You can also file a civil rights complaint with the U.S. Department of Health and Human Services, Office for Civil Rights, electronically through the Office for Civil Rights Complaint Portal, available at https://ocrportal.hhs.gov/ocr/portal/lobby.jsf, or by mail or phone at:
Office for Civil Rights
200 Independence Avenue SW, Room 509F, HHH Building
Washington, D.C. 20201, 1-800-368-1019, 800-537-7697 (TDD)
Complaint forms are available at https://ocrportal.hhs.gov/ocr/portal/lobby.jsf, or by mail or phone at:
Office for Civil Rights Complaint Portal, available at
200 Independence Avenue SW, Room 509F, HHH Building
Washington, D.C. 20201, 1-800-368-1019, 800-537-7697 (TDD)

Getting Help in Other Languages

This Notice has Important Information. This notice may have important information about your application or coverage through Premera Blue Cross. There may be key dates in this notice. You may need to take action by certain deadlines to keep your health coverage or help with costs. You have the right to get this information and help in your language at no cost.

Call 800-722-1471 (TTY: 800-842-5357).

Arabic (Arabic):
لا يجوز هذا الإشعار معلومات هامة. قد يحتوي هذا الإشعار معلومات مهمة بخصوص طبيك أو
العملية التي تريد الحصول علىها من خلال Premera Blue Cross. قد تكون هناك تاريب مهمة.
Premera Blue Cross.
ويجب عليك حاول الحصول على هذه المعلومات والمساعدة بذلك من دوك تكيد أي كلفة.
صل 800-722-1471 (TTY: 800-842-5357).

Chinese (Chinese):
本通知有重要的訊息。本通知可能有關於您透過 Premera Blue Cross 提交的申請或保險的重要訊息。本通知可能有重要日期。您可能需要在截止日期之前採取行動，以保留您的健康保險或者費用補貼。您有權利免費以您的母語得到本訊息和幫助。請拨電話 800-722-1471 (TTY: 800-842-5357).

Oromo (Cushite):

Français (French):

Kreyòl ayisyen (Creole):
Avi sila a gen Enfòmasyon Enpòtan ladan. Avi sila a kapab genyen enfòmasyon enpòtan konsënan aplikasyon w lwan osawa konsënan kouvèti asirans lan atravè Premera Blue Cross. Kapab genyen dat ki enpòtan nan avi sila a. Ou ka gen pou pran kék aksyon avan sêten dat limit pou ka kente kouvèti asirans sante w la osawa pou yo ka ede w avèk depans yo. Se dwa w pou resewwa enfòmasyon sa s ak asistans nan lang ou pale a, san ou pa gen pou peye pou sa. Rate nan 800-722-1471 (TTY: 800-842-5357).

Deutsche (German):

Hmoob (Hmong):

Iloko (Ilocano):
Daytoy a Pakdaa ket naglaon iti Napateg nga Impormasion. Daytoy a pakdaa mabalin nga adda ket naglaon iti napateg nga impormasion maianggep iti aplikasyonowo wency coverage babaen iti Premera Blue Cross. Daytoy ket mabalin dagiti importante a pelsa in daytoy a pakdaar. Mabalin nga adda rumbeng nga aramideny nga addang sakbay dagiti partikular a naituding nga alaw napo tapn apo ngalitadanooy nga torage ti salay-ayno wency tulong kadagit gastos. Adda karbenganyo a mangala iti daytoy nga impormasion ken tulong iti bukodyo a pagasaa nga awan ti bayadanyo. Tumawag ti numero nga 800-722-1471 (TTY: 800-842-5357).

Italiano (Italian):
Premera Blue Cross.

Este aviso contiene información importante. Es posible que haya fechas clave en este aviso. Es posible que deba tomar alguna medida antes de determinadas fechas para mantener su cobertura médica o ayuda con los costos. Usted tiene derecho a recibir esta información y ayuda en su idioma sin costo alguno. Llame al 800-722-1471 (TTY: 800-842-5357).

Tagalog (Tagalog):

ไทย (Thai):
ประกาศนี้เป็นข้อมูลสาระสำคัญ ประกาศบริษัทประกันภัย Premera Blue Cross และบริษัทประกันภัยในประเทศที่เกี่ยวข้อง ดังนั้นการอ่านประกาศนี้เป็นสิ่งที่สำคัญ เพื่อทราบข้อมูลที่สำคัญเกี่ยวกับการคุ้มครองคุณของบริษัทประกันภัยที่ให้บริการอยู่ในปัจจุบันที่มีข้อมูลที่ไม่สามารถชี้ชัดได้ โปรดติดต่อ 800-722-1471 (TTY: 800-842-5357) หรือ 800-842-5357.