Semi-implantable and fully implantable middle ear hearing aids are considered investigational.

Related Policies

1.01.528 Hearing Aids (Excludes Implantable Devices)
7.01.05 Cochlear Implant
7.01.547 Implantable Bone Conduction and Bone-Anchored Hearing Aids

Policy Guidelines

For reference, the Package Insert of the Vibrant Soundbridge device describes the following patient selection criteria:

- Pure-tone air-conduction threshold levels shall fall at or within the limits outlined in Table 1.

Table 1: Pure-Tone Air-Conduction Threshold Levels

<table>
<thead>
<tr>
<th>Frequency (kHz)</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Limit</td>
<td>30</td>
<td>40</td>
<td>45</td>
<td>45</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Upper Limit</td>
<td>65</td>
<td>75</td>
<td>80</td>
<td>80</td>
<td>85</td>
<td>85</td>
</tr>
</tbody>
</table>

- Word recognition score of 50% or better, using recorded material
- Normal middle ear anatomy
- Psychologically and motivationally suitable with realistic expectations of the benefits and limitations of the device
The Maxum System is indicated for use in adults, 18 years of age or older, who have a moderate to severe sensorineural hearing loss and desire an alternative to an acoustic hearing aid. Before receiving the device, it is recommended that patients have experience with appropriately fitted hearing aids.¹

The Esteem device is indicated for patients with hearing loss meeting the following criteria:

- 18 years of age or older
- Stable bilateral sensorineural hearing loss
- Moderate (hearing loss between 40 and 70 dB) to severe (hearing loss between 71 and 90 dB) sensorineural hearing loss defined by PTA [pure tone average].
- Unaided speech discrimination test score greater than or equal to 40%
- Normally functioning eustachian tube
- Normal middle ear anatomy
- Normal tympanic membrane
- Adequate space for Esteem implant determined via high resolution CT [computed tomography] scan
- Minimum 30 days of experience with appropriately fit hearing aids.

Description

Patients with hearing loss are typically fitted with external acoustic hearing aids. Semi-implantable and fully implantable middle ear hearing aids have been developed as an alternative to external acoustic hearing aids.

Background

Hearing loss is described as conductive, sensorineural, or mixed, and can be unilateral or bilateral. Normal hearing is the detection of sound at or below 20 decibels (dB). The American Speech Language-Hearing Association has defined the degree of hearing loss based on pure-tone average (PTA) detection thresholds as mild (20-40 dB), moderate (40-60 dB), severe (60-80 dB), and profound (≥80 dB).

Sound amplification through the use of an air-conduction hearing aid can provide benefit to patients with sensorineural, conductive, or mixed hearing loss. Contralateral routing of signal is a system in which a microphone on the affected side transmits a signal to an air-conduction hearing aid on the normal or less affected side.

Patients with moderate to severe sensorineural hearing loss are typically fitted with external acoustic hearing aids. However, these hearing aids may not be acceptable to patients, either due to issues related to anatomic fit, sound quality, or personal preference. Conductive hearing loss may be treated with acoustic or bone conduction hearing aids when surgical or medical interventions are unable to correct hearing loss. Semi-implantable and fully implantable middle ear hearing aids have been developed as an alternative to external acoustic hearing aids.

Regulatory Status

Two semi-implantable devices received approval by FDA, the Vibrant® Soundbridge™, approved in August 2000, and the Soundtec® Direct System™, approved in September 2001. The Soundtec was discontinued by the manufacturer Ototronix in 2004 due to performance issues; it was rereleased in 2009 under the name Maxum™ System. The FDA labeling approved for both devices states that they are “... intended for use in adults, 18 years of age or older, who have a moderate to severe sensorineural hearing loss and desire an alternative to an acoustic hearing aid.” The devices consist of three components: a magnetic component that is implanted onto the ossicles of the middle ear, a receiver, and a sound processor. The Soundbridge device is implanted subcutaneously behind the ear while the processor is worn externally on the scalp over the receiver unit and held in place by a magnet. The Soundtec (Maxum System) device is placed in the user’s ear canal while the processor rests over the external ear. In general, the sound processor receives and amplifies the sound vibrations and transforms the sound pressure into electrical signals that are received by the receiver unit. The receiver unit then transduces these electrical signals into electromagnetic energy and creates an alternating electromagnetic field.
with the magnetic component (floating mass transducer) implanted on the ossicles of the middle ear. This electromagnetic field results in attractive and repulsive forces on the magnetic implant, causing vibration of the bones of the middle ear similar to normal hearing. FDA product code: MPV.

The Esteem® Implantable Hearing System by Envoy Medical is a fully implantable middle ear hearing aid that received FDA approval in March 2010. The FDA-approved labeling for the Esteem hearing implant indicates it is “intended to alleviate hearing loss ... in adults 18 years of age or older with stable bilateral sensorineural hearing loss.” This device uses piezoelectric transduction, as opposed to the electromagnetic transduction used in the semi-implantable devices. A piezoelectric transducer, the sensor, is placed at the head of the incus and converts mechanical vibrations detected from the tympanic membrane to electrical signals that are delivered to the stapes by another piezoelectric transducer, the driver. FDA product code: OAF.

An additional fully implantable middle ear hearing aid, the Carina® Fully Implantable Hearing Device was under development (Otologics, Boulder, CO), but does not have FDA approval.

Scope

Medical policies are systematically developed guidelines that serve as a resource for Company staff when determining coverage for specific medical procedures, drugs or devices. Coverage for medical services is subject to the limits and conditions of the member benefit plan. Members and their providers should consult the member benefit booklet or contact a customer service representative to determine whether there are any benefit limitations applicable to this service or supply. This medical policy does not apply to Medicare Advantage.

Benefit Application

This device is considered a hearing aid and should be adjudicated under the hearing aid benefit provision of the member contract.

Benefit/contractual restrictions or exclusions for acoustic hearing aids for moderate to severe sensorineural hearing loss may apply.

The issue of upgrading components of middle ear implants may be best addressed contractually.

Some facilities may negotiate a global fee for the implantation of the device and the associated aural rehabilitation. However, charges for rehabilitation may be subject to individual contractual limitations.

Rationale

This policy was created in 2002 and updated regularly with searches of the MEDLINE database. The most recent literature review covers the period through February 2, 2015.

Externally worn acoustic hearing aids are widely accepted devices for patients with hearing loss. Therefore this policy of semi-implantable and fully implantable hearing aids focuses on various audiologic measures achieved with an externally worn hearing aid compared with a semi- or fully implantable hearing aid in the same patient. Another outcome that has been studied is patient preference for an implantable device compared with an externally worn device. However, it must be determined to what extent patient preference is based on convenience, which is not an element of medical necessity, compared with preference based on improved hearing. Only minimal safety concerns are related to external hearing aids. In contrast, an implantable hearing aid requires a surgical procedure for implantation. Potential risks cited for semi-implantable middle ear hearing aids include decrease in residual hearing in the implanted ear, infection in the ear and adjacent structures, and general anesthesia. Major ear surgery may also result in numbness, swelling, or discomfort around the ear, the possibility
of facial paresis, neck pain, and disturbance of balance and taste. Therefore, equivalency or improvement in audiologic outcomes associated with an implantable hearing aid must be balanced against the potential risks inherent in a surgical procedure.

Semi-Implantable Hearing Aids

Clinical trials for Food and Drug Administration Approval of Semi-Implantable Middle Ear Hearing Aids

U.S. Food and Drug Administration (FDA) approval of the Soundbridge™ and Soundtec® devices was based in part on clinical trials of 53 and 108 respective patients who had moderate to severe sensorineural hearing loss and who were dissatisfied with their existing external acoustic hearing aid. Results of these trials are available in the FDA Summaries of Safety and Effectiveness. (2,3) The results of the Soundbridge™ and Soundtec® trials have also been reported in the peer-reviewed published literature. (4) The principal outcome measures were the audiologic outcomes before (with the hearing aid in use) and after the implant. The following audiologic outcomes were reported:

Functional Gain

Functional gain is defined as the difference in sound field threshold (measured in decibels [dB]) and is an indicator of functional benefit from an amplification device. For the Soundbridge™ device, the improvement in functional gain was 14.1 dB, while for the Soundtec® device, it was 7.9 dB; both are considered a modest improvement. The clinical significance of this improvement is difficult to determine. For example, this level of improvement may be more clinically significant in patients with moderate hearing loss, for whom a 14-dB improvement in threshold might move them into the normal range for the spoken voice.

Speech Recognition

Speech recognition is assessed using the Speech Perception in Noise (SPIN) test and the Northwestern University–6 (NU-6) test, which consists of a 50-item word list. For the Soundbridge™ device, no significant difference in word recognition was found in quiet or noisy conditions between the implant and acoustic hearing aid. For the Soundtec® device, a statistically significant improvement was noted in results of the NU-6 and SPIN test at 52 weeks compared with an optimally fitted hearing aid. However, only 12 patients had completed the 52-week follow-up.

Patient Assessments

Patient self-evaluation was performed in a variety of ways. The Profile of Hearing Aid Performance (PHAP) consists of 7 subscales that measure several dimensions of hearing aid effectiveness, such as ease of communications, reverberation, and distortion of sound. The Hearing Device Satisfaction Scale (HDSS) was developed by Symphonix, the manufacturer. This scale evaluates hearing aid and Soundbridge™ use and the general satisfaction level. The number of subjects who reported improvement was significant across all 7 subscales of the PHAP. The largest improvements in the Soundbridge™ compared with the acoustic hearing aid were reported for reverberation, reduced cues, and background noise. Based on HDSS, 94% reported improved overall sound quality for the Soundbridge™. For the Soundtec® device, patient satisfaction was based on the Hough Ear Institute Profile. This profile assesses patient preference, acoustic feedback, perception of speech quality, occlusion, and tinnitus. At 20 weeks post-implant, improvements in all of the parameters were clinically significant. For example, 89% of patients preferred the implantable hearing aid to the acoustic hearing aid, although this result is not surprising because only patients who were dissatisfied with their previous acoustic hearing participated in the trial. A total of 67% of patients reported feedback with their previous acoustic hearing aid, while only 9% reported feedback with the implanted device. The clinical significance of the improvement in functional gain and speech perception is uncertain, although there appears to be a clear patient preference for the implantable devices. (5)

Safety

Minimal safety issues appeared associated with either device. In the Soundbridge™ device, the most common complication was a fullness sensation in 18, which did not resolve in 13. Altered taste sensation was reported in 7 and transient pain in 13. Two patients reported a reduction in residual hearing. In the Soundtec® device, the most
common complication included device noise, ear pain, ear irritation, and processor failure. These complications resolved in almost all patients; no patient requested removal of the device. However, risks can only be adequately evaluated in broader populations over time.

Additional Studies for Semi-Implantable Middle Ear Hearing Aids
A systematic review by Tysome et al., in 2010, examined 17 studies (of 644 articles identified) comparing hearing improvements in middle-ear hearing implants with conventional hearing aids. (6) The authors noted high-quality, long-term studies are not available. However, they concluded there was sufficient evidence to support the use of middle ear hearing aid implants. They noted hearing gains with middle ear hearing aid implants were comparable with gains with conventional hearing aids and may even improve sound quality and speech perception. Furthermore, they noted the evidence did not demonstrate a decrease in residual hearing.

In 2013, Butler et al. published results of a systematic review of comparative studies evaluating partially- and fully-implantable middle ear hearing devices for sensorineural hearing loss. (7) The review included 14 studies, none of which were randomized controlled trials, 13 of which evaluated a semi-implantable device, most often the Vibrant Soundbridge™, with 1 study evaluating the Envoy fully implantable system. Outcomes reported across studies were heterogeneous. Among the 9 studies that reported on the primary outcome of functional hearing gain, 1 found that middle ear implants were significantly better than hearing aids, 1 found that hearing aids were significantly better than implants, and 6 studies found that middle ear implants were better than hearing aids, but without a clinically significant difference. The authors conclude that middle ear implants appear to be at least as effective as hearing aids in improving hearing outcomes.

Results of a 2002 Phase II trial of the SoundTec® system were published, (8) but this publication lags behind the data included in the FDA summary of safety and effectiveness. (3) An additional case series of 64 SoundTec® implants was published in 2005. (9) The average functional gain varied with frequency, with the lowest functional gain in the lower speech frequencies (7.9 dB), with increasing functional gain at higher frequencies, ranging up to 27 dB at the highest frequency of 6,000 Hz. The functional gain of 7.9 dB at the speech frequencies is similar to that reported in the FDA summary of safety and effectiveness, while it is markedly higher in the higher frequencies. The cause of this marked discrepancy is not apparent. In this case series, the authors also reported that a high percentage of patients were hearing the magnet move inside the ear, resulting in a refinement of the surgical procedure to better stabilize the magnet.

Truy et al. reported on the Vibrant Soundbridge™ versus conventional hearing aids in 6 patients with sensorineural high-frequency hearing loss and found some improvements in hearing with the Soundbridge™ system. (10)

Small studies report early results of coupling the Vibrant Soundbridge™ system to the cochlea round window for patients with mixed hearing loss (11, 12) and for conductive and mixed hearing loss,(13) sloping high-frequency sensorineural hearing loss,(14) and aural atresia. (15-18)

Semi-Implantable Middle Ear Hearing Aids for Conductive or Mixed Hearing Loss
While the Vibrant Soundbridge™ received FDA approval for sensorineural hearing loss, several studies have evaluated it for off-label use in conductive or mixed hearing loss with coupling of the devices floating mass transducer to the middle ear’s round or oval window.

Marino et al. reported results of round window-coupled Vibrant Soundbridge implantation in 18 subjects with conductive or mixed hearing loss who could not derive benefit from conventional hearing aids due to chronic otitis externa, blind sac closure, pain with hearing aid mold use, and severe to profound mixed hearing loss. (19) Speech recognition in quiet settings with the Soundbridge device was similar to conventional hearing aids, while speech recognition in noisy settings was improved with the Soundbridge device. However, these studies are small (range, 5-25 patients) and report only short-term follow up and should be considered preliminary.

Colletti et al. reported longer term outcomes for a case series of 50 patients aged 2 months to 74 years with severe conductive or mixed hearing loss due to ossicular chain defects who underwent coupling of the Vibrant Soundbridge system to the round window. (20) Although subjects demonstrated improvements in speech perception and pure-tone audiometry (in adults) and auditory brainstem response thresholds (in infants), the study’s implications for practice are limited due to a large number of subjects with missing data (17/50) and a lack
of comparison with other therapies.

Vyskocil et al. retrospectively compared hearing outcomes for 9 patients who received the Vibrant Soundbridge™ device with a modified coupling method (attachment of the floating mass transducer to the stapes/oval window, round window, or a drilled promontory bone) with 9 patients who received standard vibroplasty with the Vibrant Soundbridge device among patients with mixed and conductive hearing loss. (21) The authors reported similar hearing improvements in both groups.

Atas et al. compared quality of life and patient satisfaction outcomes after Vibrant Soundbridge™ implantation with oval or round window coupling in 19 patients with mixed or conductive hearing loss. Twenty-two Patients were surveyed preoperatively after at least 3 months of conventional hearing aid use and postoperatively after 3 months of Vibrant Soundbridge™ use with the International Outcome Inventory for Hearing Aids (IOI-HA). The total IOI-HA score was higher with the Soundbridge™ than with conventional hearing aids (28.5 vs 25.5; p=0.018).

Skarzanski et al. retrospectively evaluated outcomes after Vibrant Soundbridge™ implantation using a surgical technique involving direct round window coupling with no interposed fascia among 21 adult patients with mixed or conductive hearing loss. (23) Over 3 years of follow-up, bone conduction hearing thresholds were stable. There were no cases of device extrusion or significant complications; 19% of patients had tinnitus, which resolved within 2 months postoperatively. In another series, Dillon et al evaluated outcomes after Vibrant Soundbridge™ implantation using round window coupling for 18 subjects with conductive or mixed hearing loss. (24) All subjects experienced a significant improvement in aided speech perception abilities compared with preoperative performance, but 6 developed perioperative complications, 4 of which required medical management or evaluation. De Abajo et al. also reported aided speech perception abilities post-Soundbridge™ implantation among 13 subjects with moderate-to-severe mixed hearing loss. (25)

Overall, several studies have evaluated alternative coupling methods for the Vibrant Soundbridge for patients with conductive or mixed hearing loss, but these studies are small, generally have not included a control group (e.g., bone-anchored hearing aids or surgical reconstruction of the external ear, as appropriate for the underlying condition), and include a heterogeneous set of underlying hearing problems, so provide relatively limited evidence for its use in this setting.

Semi-Implantable Middle Ear Hearing Aids With Alternative Surgical Approaches

Studies from European centers reported early results of combining the Soundbridge™ system with stapes surgery for otosclerosis. For example, in 2007, Venail et al. reported on results of using this combined approach in 4 patients. (26) These results should be considered preliminary. In addition, in the United States, this use would not be consistent with the FDA-approved labeling.

Zwartenkot et al. reported on a transcanal approach to implantation of the Vibrant Soundbridge™ in 13 adults with chronic external otitis and sensorineural hearing loss. (27) The authors reported the transcanal approach resulted in several postoperative complications over 51 months of follow-up including extrusion of the conducting wire into the ear canal in 5 cases. After repair of the wire extrusions, 3 cases experienced repeated extrusion. Therefore, the transcanal approach is not recommended for Soundbridge system implantation in patients with external otitis. Subsequently, Zwartenkot et al. reported longer term (mean, 7.5 years) follow-up outcomes for 33 patients with moderate to severe sensorineural hearing loss with severe chronic otitis externa who were implanted with the Vibrant Soundbridge system or the Otologics MET system, a middle ear implant system not available in the United States. (28) Compared with baseline, at long-term follow-up, subjects had statistically significant improvements in total scores on the Abbreviated Profile of Hearing Aid Benefit, but the magnitude of the difference was small (63.3 at baseline vs 55.6 at follow-up, p<0.05). Eighty-five percent of subjects reported wearing the device more than 4 hours a day. This study provides some evidence that middle ear implantable hearing aids have some benefit over the longer term for patients with chronic otitis externa; however, this study is limited by self-reported outcome measures, the fact that approximately 20% of respondents received a device that is not available in the United States, and that 15 subjects who were considered potentially eligible were either excluded due to insufficient follow-up duration or complications from the device or failed to respond to the questionnaire.

Fully Implantable Hearing Aid
Clinical trials for FDA Approval of a Fully-Implantable Middle Ear Hearing Aid

FDA approval of the Esteem device was based on a prospective, nonrandomized, mult-center clinical trial of 60 patients with moderate-to-severe sensorineural hearing loss designed to assess the safety and efficacy of the Esteem Hearing System. (29) Patients served as both control and test subject as hearing was tested before (with and without hearing assistive devices) and after Esteem implantation. Results of this trial are available in the FDA Summaries of Safety and Effectiveness. In this study, patients experienced an improvement of 11.4 dB in mean speech reception threshold at 10 months’ post-implantation when compared with pre-implant aided speech reception thresholds. Overall, word recognition scores were equal to or better than pre-implant aided scores in 93% of patients. The other 7% experienced lower word recognition scores than pre-implant scores using hearing aids.

Ninety-six adverse device events occurred and were considered to be not serious. Taste disturbance was reported to be the most common adverse effect reported at 42% followed by tinnitus in 18% and facial paralysis/paresis in 7% of patients. Severe adverse device effects were experienced in 6 of the 57 patients implanted and included 3 revisions due to fibrous adhesions which limited implant benefit, 1 incision breakdown which required explantation, and 1 wound infection and 1 severe pain and facial weakness case, both of which resolved when treated with medication. Overall, 70% of all adverse events resolved at 10-month follow-up. However, the serious adverse event of facial paralysis/palsy had not resolved in 2 patients.

Kraus et al. reported on 1-year follow-up of the Esteem study in 2011. (30) Results were similar to those reported to FDA at 10-month follow-up. Speech reception thresholds improved 11.8±1.8 dB from a mean pre-implant aided score of 41.2 dB to 29.4 dB (p<0.001). Word recognition scores improved by a mean of 19.8%±4.3% from pre-implant aided scores. The authors reported 133 adverse events including 3 cases of facial paresis resolved with medication.

Additional Studies for a Fully-Implantable Middle Ear Hearing Aid

Reports in the literature on use of a totally implantable hearing device are few.

In 2014, Pulcherio et al. reported results of a systematic review of studies of 2 fully-implantable middle-ear hearing devices: FDA-approved Esteem device and the Carina device. (31) The review included 22 studies with a total of 244 patients, 110 implanted with the Carina device and 134 with the Esteem device. No randomized controlled trials were identified, and most studies were small, with the largest series including 57 subjects and 12 series including fewer than 10 subjects. All of the studies showed improvement of sound field threshold from unaided to aided conditions with the fully implantable device, but the magnitude of the improvements varied.

A 2012 systematic review of literature on the Esteem device included 7 articles that met inclusion criteria. (32) Complication rates with the Esteem device most commonly included taste disturbance. Clinically significant improvements in functional gain, speech reception, and speech recognition over the unaided condition were reported. In studies comparing the Esteem implant with conventional hearing aids, findings were mixed. Improvements in functional gain were similar to those for hearing aids; however, speech recognition and quality of life were greater with the implants. This limited evidence suggests these devices may offer a relatively safe and effective treatment option, particularly for patients who are medically unable to wear conventional hearing aids. However, the included studies were primarily quasi-experimental, pre/post comparisons of aided and unaided conditions. Furthermore, because of heterogeneity across studies, meta-analysis was not performed, and comparisons were made by structured review.

Several representative case series are described next. Barbara et al. reported on use of the 2010 FDA-approved totally implantable Esteem device in 21 patients with severe bilateral sensorineural hearing loss. (33) The authors reported mean hearing threshold levels improved overall from 70 to 48 dB. In another article reporting on 6 patients implanted with the Esteem device, Barbara et al found the device improved hearing when assessed during postoperative fittings. (34) Chen et al. reported on the phase 1 results of the Envoy Totally Implantable Hearing System in 7 patients followed up at 2 and 4 months after activation of the device. (35) Improvements in word recognition and communication in background noise over best-fit hearing aid usage was perceived in 5 patients. Patient outcomes in functional gain and speech reception thresholds were comparable with best-fit hearing aid usage.

Several recent small case series (36-39) have been published that do not provide significant additional evidence
about outcome improvements associated with the Esteem device.

A case series published since the Pulcherio et al. and Klein et al. systematic reviews reported high rates of facial nerve palsies (10/34 subjects [29.4%]) after implantation of the Esteem device, which persisted to 3 months of follow-up in 6 of 34 subjects (17.6%). (40)

Overall, studies related to fully implantable middle ear hearing aid devices report on short-term results from a small number of patients and demonstrate insufficient evidence to support the medical necessity of their use.

Ongoing and Unpublished Clinical Trials
A search of ClinicalTrials.gov on February 19, 2015, identified no ongoing randomized trials evaluating partially or fully implantable middle ear hearing aids.

Summary of Evidence
The limited data suggest semi-implantable middle ear hearing aids may provide marginal improvement in hearing compared with conventional external acoustic hearing aids in patients with sensorineural hearing loss. However, given the safety and effectiveness of external acoustic hearing aids and the increased risks inherent in a surgical procedure, the semi-implantable device must be associated with clinically significant improvement in various hearing parameters compared with external hearing aids. While safety concerns appear to be minimal, only a limited number of patients have been included in the clinical trials, and few have completed more than 1 year of follow-up. Given the small number of patients and the limited safety data, risks cannot be adequately evaluated and compared with the marginal improvement in hearing. Studies on patients with conductive or mixed hearing loss and aural atresia, when external acoustic hearing aids are not an option, have also demonstrated hearing benefit with semi-implantable middle ear hearing aids. However, these studies are few and limited to small numbers of patients. Therefore, conclusions on the safety and effectiveness of semi-implantable hearing aids in these patients cannot be made, and further study with longer term follow-up is needed. Comparisons of semi-implantable devices with alternative hearing devices such as implantable bone-conduction and bone-anchored hearing aids would also be useful to determine device appropriateness for patients who are unable to use external air-conduction hearing aids. Due to the lack of adequate safety data in broader patient populations over a longer period of time, semi-implantable middle ear hearing aids are investigational for all indications.

The available evidence for use of fully implantable middle ear hearing aids is insufficient to demonstrate long-term improvement in net health outcome. Concerns exist about adverse events with these devices. Therefore, fully implantable middle ear hearing aids are considered investigational.

Practice Guidelines and Position Statements
The American Academy of Otolaryngology-Head and Neck Surgery issued a position statement on implantable hearing devices, most recently updated on January 8, 2013, which states (41):

“The American Academy of Otolaryngology-Head and Neck Surgery, Inc. considers the implantation of a percutaneous or transcutaneous bone conduction hearing device, placement of a bone conduction oral appliance, and implantation of a semi-implantable or totally implantable hearing device to be acceptable procedures for the relief of hearing impairment when performed by, or in collaboration with, a qualified otolaryngologist-head and neck surgeon. Use of any device must adhere to the restrictions and guidelines specified by the appropriate governing agency, such as the U.S. Food and Drug Administration in the United States and other similar agencies in countries other than the United States.”

U.S. Preventive Services Task Force Recommendations
Not applicable.

Medicare National Coverage
No national coverage determination has been published. The Medicare Benefit Policy Manual references hearing aids and auditory implants, stating that hearing aids are excluded from coverage. (42) However, devices which produce the perception of sound by replacing the function of the middle ear, cochlea, or auditory nerve are payable by Medicare as prosthetic devices. These devices are indicated only when hearing aids are medically
inappropriate or cannot be used due to congenital malformations, chronic disease, severe sensorineural hearing loss or surgery. The benefit manual does not specifically refer to semi- or fully implantable hearing aids as prosthetic devices.

References

20. Colletti L, Mandala M, Colletti V. Long-term outcome of round window Vibrant SoundBridge implantation...

Coding

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>69799</td>
<td>Unlisted procedure, middle ear</td>
</tr>
<tr>
<td>HCPCS</td>
<td>S2230</td>
<td>Implantation of magnetic component of semi-implantable hearing device on ossicles in middle ear.</td>
</tr>
<tr>
<td>V5095</td>
<td></td>
<td>Semi-implantable middle ear hearing prosthesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Service</th>
<th>Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Place of Service</td>
<td>Inpatient</td>
</tr>
</tbody>
</table>

Appendix

N/A

History

<table>
<thead>
<tr>
<th>Date</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/15/03</td>
<td>Add to Surgery Section - New Policy</td>
</tr>
<tr>
<td>06/08/04</td>
<td>Replace Policy - Policy reviewed; no change in policy statement.</td>
</tr>
<tr>
<td>06/14/05</td>
<td>Replace Policy - Policy reviewed with literature search; no change in policy statement.</td>
</tr>
<tr>
<td>07/11/06</td>
<td>Replace Policy - Policy updated with literature search; reference added; no change in policy statement.</td>
</tr>
<tr>
<td>05/13/08</td>
<td>Replace Policy - Policy updated with literature search; no change to the policy statement. Reference added.</td>
</tr>
<tr>
<td>01/12/10</td>
<td>Replace Policy - Policy updated with literature search; no change to the policy statement. Reference added.</td>
</tr>
<tr>
<td>06/13/11</td>
<td>Replace Policy - Policy updated with literature review, reference numbers 10-14 added, “fully implantable” hearing aid added to policy, title changed to reflect addition, fully implantable device, previously not addressed, is now considered investigational. ICD-10 codes added to policy.</td>
</tr>
<tr>
<td>06/26/12</td>
<td>Replace policy. Policy updated with literature review, rationale section reorganized, reference numbers 10-12, 14, 16 and 20 added, policy title changed with the removal of “for moderate to severe sensorineural hearing loss.” Policy statement unchanged. HCPCS code L8613 removed, as it does not apply to this policy.</td>
</tr>
<tr>
<td>09/28/12</td>
<td>Update Coding Section – ICD-10 codes are now effective 10/01/2014</td>
</tr>
<tr>
<td>10/18/12</td>
<td>Update Related Policy – 7.01.03 renumbered to 7.01.547.</td>
</tr>
<tr>
<td>05/28/13</td>
<td>Replace policy. Rationale section updated based on a literature review through February 2013; references 10, 12, 15, 23-27 added; others renumbered or removed. Policy statement unchanged.</td>
</tr>
<tr>
<td>03/21/14</td>
<td>Update Related Policies. Add 1.01.528.</td>
</tr>
<tr>
<td>06/13/14</td>
<td>Annual Review. Policy updated with literature review through February 11, 2014; references 1, 18-20, and 23 added; policy statement unchanged.</td>
</tr>
</tbody>
</table>

Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. The Company adopts policies after careful review of published peer-reviewed scientific literature, national guidelines and local standards of practice. Since medical technology is constantly changing, the Company reserves the right to review and update policies as appropriate. Member contracts differ in their benefits. Always consult the member benefit booklet or contact a member service representative to determine coverage for a specific medical service or supply. CPT codes, descriptions and materials are copyrighted by the American Medical Association (AMA). ©2015 Premera All Rights Reserved.