Prophylactic Mastectomy

Number: 7.01.561
Effective Date: May 1, 2016
Revision Date(s): N/A
Replaces: 7.01.09

Prophylactic mastectomy may be considered **medically necessary** in patients at high risk of breast cancer, including but not limited to:

- Lobular carcinoma in situ
- A known BRCA1 or BRCA2 mutation
- Another gene mutation associated with high risk, e.g., TP53 (Li-Fraumeni syndrome), PTEN (Cowden syndrome, Bannayan-Riley-Ruvalcaba syndrome), CDH1, and STK11
- High risk (lifetime risk 20% or greater) of developing breast cancer as identified by models that are largely defined by family history
- Patients who Received radiotherapy to the chest between 10 and 30 years of age.

(For information on risk levels, see Description section.)

Prophylactic mastectomy may be considered **medically necessary** in patients with such extensive mammographic abnormalities (i.e., calcifications) that adequate biopsy or excision is impossible.

Prophylactic mastectomy is considered **investigational** for all other indications, including but not limited to contralateral prophylactic mastectomy in women with breast cancer who do not meet high risk criteria.

Related Policies

- **12.04.93** | Genetic Cancer Susceptibility Panels Using Next Generation Sequencing
- **12.04.126** | Genetic Testing for PALB2 Mutations
- **12.04.504** | Genetic Testing for Hereditary Breast and/or Ovarian Cancer Syndrome (BRCA1/BRCA2)
It is strongly recommended that all candidates for prophylactic mastectomy undergo counseling regarding cancer risks from a health professional skilled in assessing cancer risk other than the operating surgeon and discussion of the various treatment options, including increased surveillance or chemoprevention with tamoxifen or raloxifene.

Coding

<table>
<thead>
<tr>
<th>CPT</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19303</td>
<td>Mastectomy, simple, complete</td>
</tr>
<tr>
<td>19304</td>
<td>Mastectomy, subcutaneous</td>
</tr>
</tbody>
</table>

Description

Prophylactic mastectomy (PM) is defined as the removal of the breast in the absence of malignant disease to reduce the risk of breast cancer occurrence.

The evidence for PM in women who have high risk of breast cancer or extensive mammographic abnormalities precluding incision or biopsy includes a TEC Assessment and systematic review of observational studies. Relevant outcomes are overall survival, disease-specific survival, functional outcomes, and treatment-related morbidity. The studies found that PM reduces breast cancer incidence and increases survival in select patients. The evidence is sufficient to determine qualitatively that the technology results in a meaningful improvement in the net health outcome.

The evidence for contralateral prophylactic mastectomy (CPM) in women who have unilateral breast cancer but are not otherwise at high risk includes observational studies. Relevant outcomes are overall survival, disease-specific survival, functional outcomes, and treatment-related morbidity. Available studies do not clearly demonstrate a survival benefit in women without high-risk criteria. Moreover, there are potential risks (e.g., surgical risks) associated with CPM. National guidelines, including those from the National Comprehensive Care Network, do not recommend that CPM be considered other than for certain high-risk women. The evidence is insufficient to determine the effects of the technology on health outcomes.

Background

Prophylactic mastectomy (PM) may be considered in women thought to be at high risk of developing breast cancer, either due to a family history, presence of genetic mutations such as BRCA1 or BRCA2, having received radiotherapy to the chest, or the presence of lesions associated with an increased cancer risk such as lobular carcinoma in situ (LCIS). LCIS is both a risk factor for all types of cancer, including bilateral cancer, and in some cases, a precursor for invasive lobular cancer. For those who develop invasive cancer, up to 35% may have bilateral cancer. Therefore, bilateral PM may be performed to eliminate the risk of cancer arising elsewhere; chemoprevention and close surveillance are alternative risk reduction strategies. PMs are typically bilateral but can also describe a unilateral mastectomy in a patient who has previously undergone or is currently undergoing a mastectomy in the opposite/contralateral breast for an invasive cancer (i.e., CPM). The use of CPM has risen in recent years in the United States. An analysis of data from the National Cancer Data Base found that the rate of CPM in women diagnosed with unilateral stage I–III breast cancer increased from approximately 4% in 1998 to 9.4% in 2002. (1)

The appropriateness of a PM is a complicated risk-benefit analysis that requires estimates of a patient’s risk of breast cancer, typically based on the patient’s family history of breast cancer and other factors. Several models are available to assess risk, such as the Claus model and the Gail model. Breast cancer history in first- and second-degree relatives is used to estimate breast cancer risk in the Claus model. The Gail model uses the following 5 risk factors: age at evaluation, age at menarche, age at first live birth, number of breast biopsies, and
number of first-degree relatives with breast cancer. Moreover, the choice of PM is based on patient tolerance for risk, consideration of changes to appearance and need for additional cosmetic surgery, and the risk reduction offered by PM versus other options.

There is no standardized method for determining a woman’s risk of breast cancer that incorporates all possible risk factors. There are validated risk prediction models, but they are based primarily on family history.

Some known individual risk factors confer a high risk by themselves. The following list includes factors known to indicate a high risk of breast cancer:

- Lobular carcinoma in situ or
- A known BRCA1 or BRCA2 mutation or
- Another gene mutation associated with high risk, e.g., TP53 (Li-Fraumeni syndrome), PTEN (Cowden syndrome, Bannayan-Riley-Ruvalcaba syndrome), CDH1, and STK11 or
- High risk (lifetime risk about 20% or greater) of developing breast cancer as identified by models that are largely defined by family history or
- Received radiotherapy to the chest between 10 and 30 years of age.

A number of other factors may increase the risk of breast cancer but do not by themselves indicate high risk. It is possible that combinations of these factors may be indicative of high risk, but it is not possible to give quantitative estimates of risk. As a result, it may be necessary to individualize the estimate of risk, taking into account numerous risk factors. A number of risk factors, not individually indicating high risk, are included in the National Cancer Institute Breast Cancer Risk Assessment Tool, also called the Gail Model. Risk factors in the model can be accessed online (http://www.cancer.gov/bcrisktool/Default.aspx).

Regulatory Status
Mastectomy is a surgical procedure and, as such, is not subject to regulation by the U.S. Food and Drug Administration.

Scope
Medical policies are systematically developed guidelines that serve as a resource for Company staff when determining coverage for specific medical procedures, drugs or devices. Coverage for medical services is subject to the limits and conditions of the member benefit plan. Members and their providers should consult the member benefit booklet or contact a customer service representative to determine whether there are any benefit limitations applicable to this service or supply. This medical policy does not apply to Medicare Advantage.

Benefit Application
N/A

Rationale

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals:</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>With high risk of breast cancer</td>
<td>• Prophylactic mastectomy</td>
<td>• Active surveillance</td>
<td>• Overall survival</td>
</tr>
<tr>
<td>With extensive mammographic abnormalities precluding incision or biopsy</td>
<td></td>
<td>• Standard care</td>
<td>• Disease-specific survival</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Functional outcomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Treatment-related morbidity</td>
</tr>
</tbody>
</table>

This policy was created in 1995 and updated regularly with searches of the MEDLINE database. The most recent literature search was performed for the period February 5, 2013, through January 7, 2016. Following is a summary of the key literature.

Prophylactic Mastectomy

The policy was initially based on a 1999 TEC Assessment that concluded that prophylactic mastectomy (PM) met the TEC criteria for patients with a family history of breast cancer. (2) The Assessment largely focused on a 1999 retrospective cohort analysis which found that approximately 13 moderate-risk women would have to have PM to prevent 1 cancer. For those at high risk of breast cancer, reduction in breast cancer incidence ranged from 90% to 94%. Four to 8 high-risk women would need to undergo PM to prevent 1 occurrence of breast cancer.

As of 2014, the National Comprehensive Cancer Network guideline recommends that PM should only be considered in high-risk women, defined as having a BRCA1 or BRCA2 mutation or another gene mutation associated with increased risk (e.g., PTEN, TP53, CDH1, STK11), a compelling family history, and possibly in women with lobular carcinoma in situ (LCIS) or prior thoracic radiotherapy before 30 years of age. (3) Additional genetic mutations that have been associated with a high rate of cancer include TP53 (Li Fraumeni syndrome) and PTEN (Cowden and Bannayan-Riley-Ruvalcaba syndromes). In patients who received prior radiotherapy to the chest between the ages of 10 and 30 years of age, the increased risk of breast cancer can reach almost 30% by age 55 years. (4) Patients with LCIS, which is usually identified incidental to breast biopsy, are also at increased risk of cancer. In 2011, Oppong and King reported that, compared with the general population, women with LCIS face an 8- to 10-fold increased risk of cancer, equaling 26% after 20 years in 1 study. (5)

A 2010 Cochrane review examined the impact of PM on mortality and other health outcomes. (6) The authors did not identify any randomized controlled trials (RCTs). Thirty-nine observational studies with some methodological limitations were identified in the literature search. The studies presented data on 7384 women with a wide range of risk factors for breast cancer who underwent PM. Studies on the incidence of breast cancer and/or disease-specific mortality reported reductions after bilateral PM, particularly for those with BRCA 1/2 mutations. The authors concluded that, while the available observational data suggest that bilateral PM reduces the rate of breast cancer mortality, more rigorous studies (ideally RCTs) are needed, and that bilateral PM should only be considered among patients at very high risk of disease.

Summary

Evidence from systematic reviews found breast cancer incidence is reduced and breast cancer survival is increased in women at high risk of breast cancer, especially those with BRCA1 or BRCA2 and selected other mutations and those with a compelling family history.

Contralateral Prophylactic Mastectomy

Incidence of Second Primary Breast Cancer

The potential for CPM to impact survival is related to its association with a reduced risk of subsequent primary breast cancer in the other breast (ie, contralateral breast cancer [CBC]). In general, according to data from the U.S. Surveillance, Epidemiology and End Results (SEER) database, annual rates of CBC were stable between 1975 and 1985, after which rates declined about 3% per year (95% confidence interval [CI], 2.7% to 3.5%). Beginning in 1990, the annual decline in CBC rates was only in women with estrogen receptor–positive cancer, with no decrease in women with estrogen receptor–negative cancer. The investigators suggested that the decrease in CBC rates after estrogen receptor–positive cancer may be attributed at least in part to the increased availability of adjuvant hormone therapies.

Studies were sought on the risk of CBC in women who meet high-risk criteria versus average-risk criteria. In

<table>
<thead>
<tr>
<th>Individuals:</th>
<th>Interventions of interest are:</th>
<th>Comparators of interest are:</th>
<th>Relevant outcomes include:</th>
</tr>
</thead>
<tbody>
<tr>
<td>With unilateral breast cancer but are not otherwise at high risk</td>
<td>Contralateral prophylactic mastectomy</td>
<td>Active surveillance</td>
<td>Overall survival</td>
</tr>
</tbody>
</table>

| | | Standard care | Disease-specific survival |
| Functional outcomes | Treatment-related morbidity | | |
In 2013, Yao et al evaluated OS after CPM by analyzing data from the National Cancer Data Base. They found significantly lower OS in women who had unilateral mastectomy versus CPM. For DSS, the HR was 0.87 (95% CI, 0.81 to 0.93). In the analysis excluding women diagnosed with CBC; the remaining sample was still large (25,924 women with unilateral mastectomy and 26,299 women with CPM). In the analysis excluding women who had CBC, DSS and OS remained significantly lower in women who had unilateral mastectomy versus CPM. For DSS, the HR was 0.83 (95% CI, 0.77 to 0.89); for OS, it was 0.77 (95% CI, 0.73 to 0.82).

Survival

As is the case for bilateral PM, no RCTs evaluating the effect of CPM on health outcomes have been published. There are a number of observational studies, including some with large sample sizes, and a systematic review of observational studies. Observational studies have attempted to control for potential confounders, but not all relevant factors were measured, and the possibility of selection bias remains.

A systematic review and meta-analysis of studies on CPM was published in 2014 by Fayanju et al.(9) The authors searched for published studies that compared the incidence of CBC in women with unilateral disease who did and did not undergo CPM. Fourteen observational studies met eligibility criteria and were included in the meta-analysis. In a meta-analysis of 4 studies, mortality from breast cancer was lower in the group that had CPM (relative risk [RR], 0.69; 95% CI, 0.56 to 0.85). Moreover, in a meta-analysis of data from 6 studies, overall survival (OS) was significantly higher in patients who underwent CPM (n=10,666) than those who had no CPM (n=145,490) (RR=1.09; 95% CI, 1.06 to 1.11). The authors also conducted a subgroup analysis by risk level. Studies in which all patients were BRCA mutation carriers and studies in which all patients had a family history of breast cancer (4 studies) were categorized as indicating higher familial/genetic risk. Together, the studies included 618 patients who had CPM and 1318 patients who did not. In a meta-analysis limited to these 4 studies, neither OS nor mortality from breast cancer differed significantly among women who had or did not have CPM. The relative risk of breast cancer mortality with and without CPM was 0.66 (95% CI, 0.27 to 1.64). For OS with and without CPM, the relative risk was 1.09 (95% CI, 0.97 to 1.24). The absolute reduction in the risk of metachronous breast cancer did not differ in women with and without CPM when data from all 8 studies were analyzed (risk difference [RD], -18.0%; 95% CI, -42.0% to 5.9%), but was significantly lower in women with CPM in the 4 studies exclusively enrolling women at increased familial/genetic risk (RD = -24.0%; 95% CI, -35.6% to -12.4%). Commenting on the totality of findings, the authors stated that the improvement in survival after CPM in the general breast cancer population was likely not due to a decreased incidence of contralateral breast cancer, but rather was secondary to selection bias (eg, CPM recipients may be otherwise healthier and have better access to health care).

Studies in the Fayanju meta-analysis were published between 1997 and 2005. More recent large observational analyses are described below.

Other analyses have also suggested that the association between CPM and reduced mortality identified in some data analyses can be attributed at least in part to selection of a healthier cohort of women for CPM.(10,11) In particular, a 2014 analysis by Kruper et al of a large dataset from the SEER database looked at CBC and survival outcomes.(10) The investigators conducted a case-control analysis including 28,015 CPM patients and 28,015 unilateral mastectomy patients, matched on age group, race/ethnicity, extent of surgery, tumor grade, tumor classification, node classification, estrogen receptor status, and propensity score. The investigators were not able to match for BRCA or other mutation status. When all matched patients were included, disease-specific survival (DSS) and OS were significantly lower in women who underwent unilateral mastectomy compared with CPM. For DSS, the hazard ratio (HR) was 0.83 (95% CI, 0.77 to 0.90); for OS, it was 0.77 (95% CI, 0.73 to 0.82). Presumably, CPM would increase survival by lowering the risk of CBC. The authors conducted another analysis excluding women diagnosed with CBC; the remaining sample was still large (25,924 women with unilateral mastectomy and 26,299 women with CPM). In the analysis excluding women with CBC, DSS and OS remained significantly lower in women who had unilateral mastectomy versus CPM. For DSS, the HR was 0.87 (95% CI, 0.80 to 0.94); for OS, it was 0.76 (95% CI, 0.71 to 0.81). The investigators suggested that the survival benefits found in CBC patients was not due to prevention of CBC, but instead to selection bias (eg, healthier women choosing CBC). A limitation of the analysis was the inability to control for risk factors including gene mutation status, family history, and a history of radiotherapy to the chest between ages 10 and 30 years.

In 2013, Yao et al evaluated OS after CPM by analyzing data from the National Cancer Data Base.(11) The
A subsequent study by Pesce et al, published in 2014, focused on the subgroup of patients who were young (<45 years old) with stage I or II breast cancer. (12) A total of 4338 (29.7%) of 14,627 women in this subgroup had CPM at the time of mastectomy surgery. Median follow-up was 6.1 years. In a multivariate analysis controlling for potentially confounding factors, OS did not differ significantly among patients who underwent unilateral mastectomy and those who also had CPM (HR=0.93; 95% CI, 0.79 to 1.09). Moreover, among women younger than 45 years with estrogen receptor-negative cancer, there was no significant improvement in OS in those who had CPM versus unilateral mastectomy (HR=1.13; 95% CI, 0.90 to 1.42).

There are risks and benefits associated with CPM. In particular, several analyses have found higher rates of surgical complications in women undergoing CPM (bilateral mastectomy) versus unilateral mastectomy. Besides morbidity associated with these complications, surgical complications may delay receiving adjuvant therapy.

In 2015, Silva et al published a large multicenter study including 20,501 women with unilateral breast cancer from the American College of Surgeons National Surgery Quality Improvement Program (NSQIP) database. (13) A total of 13,268 (64.7%) women underwent unilateral mastectomy and 7233 (35.3%) had bilateral mastectomy. The analysis did not report on high-risk factors such as BRCA mutation status or family history. All women had breast reconstruction; a higher proportion of women who had unilateral mastectomy (19.5%) than bilateral mastectomy (8.9%) had autologous reconstruction; the remainder had implant-based reconstruction. The authors conducted analyses controlling for confounding variables (ie age, race smoking, diabetes, chronic pulmonary disease, hypertension) and stratifying by type of implant. The rate of overall complications was significantly higher for women who had a bilateral versus unilateral mastectomy, regardless of reconstruction type. Among women with implant reconstructions, overall complication rates were 10.1% after bilateral mastectomy and 8.8% after unilateral mastectomy (adjusted odd ratio [OR], 1.20; 95% CI, 1.08 to 1.33). In women with autologous reconstructions, overall complication rates were 21.2% after bilateral mastectomy and 14.7% after unilateral mastectomy (adjusted OR=1.60; 95% CI, 1.28 to 1.99). The most common complication was reoperation within 30 days, followed by surgical site complications. Transfusion rates were also significantly higher (p<0.001) in women with bilateral versus unilateral mastectomies who had either type of reconstruction. The rates of medical complications were relatively low—approximately 1% of women who had implant reconstructions and 3% of women who had autologous reconstructions experienced a medical complication (ie, pneumonia, renal insufficiency or failure, sepsis, urinary tract infection, venous thromboembolism)—and did not differ significantly for unilateral versus bilateral mastectomies.

Several single-center studies have also found significantly higher surgical complication rates after bilateral than unilateral mastectomy. For example, in a 2013 study by Miller et al, which included 600 women with unilateral breast cancer, CPM remained associated with a significantly higher risk of any complication (OR=1.53; 95% CI, 1.04 to 2.25) and a significantly higher risk of major complications (OR=2.66; 95% CI, 1.37 to 5.19) than unilateral mastectomy. (14) Moreover, in a 2014 study by Eck et al, which assessed 352 women with unilateral breast cancer, 94 (27%) women had complications, 48 (14%) in the unilateral mastectomy group and 46 (13%) in the bilateral mastectomy group. (15) The difference between groups was not statistically significant (p=0.11), but this study may have been underpowered. Moreover, the Eck study found a significant delay in adjuvant therapy after surgical complications. Women with complications waited longer before receiving adjuvant therapy than those without complications (49 days vs 40 days, p<0.001).

Section Summary

Large observational studies have had mixed findings on the survival benefit of CPM in women with unilateral breast cancer who do not otherwise meet high-risk criteria. Researchers have suggested that improvement in survival after CPM in the general breast cancer population found in some studies is due at least in part to selection bias. Moreover, there are risks (eg, surgical risks) of CPM.
Ongoing and Unpublished Clinical Trials
A search of ClinicalTrials.gov in January 2016 did not identify any ongoing or unpublished trials that would likely influence this review.

Summary of Evidence
The evidence for prophylactic mastectomy (PM) in women who have high risk of breast cancer or extensive mammographic abnormalities precluding incision or biopsy includes a TEC Assessment and systematic review of observational studies. Relevant outcomes are overall survival, disease-specific survival, functional outcomes, and treatment-related morbidity. The studies found that PM reduces breast cancer incidence and increases survival in select patients. The evidence is sufficient to determine qualitatively that the technology results in a meaningful improvement in the net health outcome.

The evidence for contralateral prophylactic mastectomy (CPM) in women who have unilateral breast cancer but are not otherwise at high risk includes observational studies. Relevant outcomes are overall survival, disease-specific survival, functional outcomes, and treatment-related morbidity. Available studies do not clearly demonstrate a survival benefit in women without high-risk criteria. Moreover, there are potential risks (eg, surgical risks) associated with CPM. National guidelines, including those from the National Comprehensive Care Network, do not recommend that CPM be considered other than for certain high-risk women. The evidence is insufficient to determine the effects of the technology on health outcomes.

Clinical Input Received From Physician Specialty Societies and Academic Medical Centers
While the various physician specialty societies and academic medical centers may collaborate with and make recommendations during this process, through the provision of appropriate reviewers, input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted.

In response to requests, focused clinical input was received from 6 academic medical centers and 1 specialty society while this policy was under review in 2016. The focused clinical input addressed the issue of CPM in women with unilateral breast cancer who are not otherwise at high risk for developing breast cancer in the contralateral breast. Clinical input was mixed. Clinicians offered suggestions for modifying high-risk criteria but there was no consensus on potential additional risk factors.

Practice Guidelines and Position Statements
National Comprehensive Cancer Network
- Breast Cancer Risk Reduction (v.2.2015): “Risk-reduction mastectomy should generally be considered only in women with a genetic mutation conferring a high risk history for breast cancer (See NCCN guidelines for Genetic/Familial High-Risk Assessment: Breast and Ovarian,(16) Table on GENE-2*), compelling family history, or possibly with LCIS [lobular carcinoma in situ] or prior thoracic radiation therapy at < 30 years of age. The value of risk-reduction mastectomy in women with deleterious mutations in other genes associated with a 2-fold or greater risk for breast cancer (based on large epidemiologic studies) in the absence of a compelling family history of breast cancer is unknown.”
- Breast cancer (v.2.2015): Except for certain high-risk situations (noted in the risk reduction guideline previously discussed), CPM is discouraged.(17) The guideline states: “the small benefits from contralateral prophylactic mastectomy for women with unilateral breast cancer must be balanced with the risk of recurrent disease from the known ipsilateral breast cancer, psychological and social issues of bilateral mastectomy, and the risks of contralateral mastectomy. The use of a prophylactic mastectomy contralateral to a breast treated with breast-conserving therapy is very strongly discouraged.”

* Genes that confer more than 20% risk of breast cancer include BRAC1, BRCA2, ATM, CDH1, CHEK2, PALB2, PTEN, STK11, and TP53.
Society of Surgical Oncology
The Society of Surgical Oncology developed a position statement on PM in 1993 and updated it in 2007. The position statement states that bilateral PM is potentially indicated in patients with:
- Known BRCA 1 or 2 mutations or other genes that strongly predispose susceptibility to breast cancer,
- A history of multiple first-degree relatives with breast cancer history or multiple successive generations of breast and/or ovarian cancer, or
- Biopsy-confirmed, high-risk histology such as atypical ductal or lobular hyperplasia or LCIS.

The position statement also stated that CPM may be potentially indicated in patients:
- With high risk (as previously defined) of contralateral breast cancer,
- In whom surveillance would be difficult such as with dense breast tissue or diffuse indeterminate microcalcifications, or to improve symmetry.

National Cancer Institute
The National Cancer Institute issued a fact sheet in 2012 on surgery to reduce the risk of breast cancer. The fact sheet provided the following information: "Prophylactic surgery to remove both breasts (called bilateral prophylactic mastectomy) can reduce the risk of breast cancer in women who have a strong family history of breast and/or ovarian cancer, who have a deleterious (disease-causing) mutation in the BRCA1 gene or the BRCA2 gene, or who have certain breast cancer-associated mutations in other genes, such as TP53 and PTEN."

U.S. Preventive Services Task Force Recommendations
No U.S. Preventive Services Task Force recommendations for PM have been identified.

Medicare National Coverage
There is no national coverage determination (NCD). In the absence of an NCD, coverage decisions are left to the discretion of local Medicare carriers.

References

Discrimination is Against the Law

Premera Blue Cross complies with applicable Federal civil rights laws and does not discriminate on the basis of race, color, national origin, age, disability, or sex. Premera does not exclude people or treat them differently because of race, color, national origin, age, disability or sex.

Premera:
- Provides free aids and services to people with disabilities to communicate effectively with us, such as:
 - Qualified sign language interpreters
 - Written information in other formats (large print, audio, accessible electronic formats, other formats)
- Provides free language services to people whose primary language is not English, such as:
 - Qualified interpreters
 - Information written in other languages

If you need these services, contact the Civil Rights Coordinator.

If you believe that Premera has failed to provide these services or discriminated in another way on the basis of race, color, national origin, age, disability, or sex, you can file a grievance with:

Civil Rights Coordinator - Complaints and Appeals
PO Box 91102, Seattle, WA 98111
Toll free 855-332-4535, Fax 425-918-5592, TTY 800-842-5357
Email AppealsDepartmentInquiries@Premera.com

You can file a grievance in person or by mail, fax, or email. If you need help filing a grievance, the Civil Rights Coordinator is available to help you.

You can also file a civil rights complaint with the U.S. Department of Health and Human Services, Office for Civil Rights, electronically through the Office for Civil Rights Complaint Portal, available at:
https://ocrportal.hhs.gov/ocr/portal/lobby.jsf, or by mail or phone at:
U.S. Department of Health and Human Services
200 Independence Avenue SW, Room 509F, HHH Building
Washington, D.C. 20201, 1-800-368-1019, 800-537-7697 (TDD)
Complaint forms are available at

Getting Help in Other Languages

This Notice has Important Information. This notice may have important information about your application or coverage through Premera Blue Cross. There may be key dates in this notice. You may need to take action by certain deadlines to keep your health coverage or help with costs. You have the right to get this information and help in your language at no cost. Call 800-722-1471 (TTY: 800-842-5357).

Arabic (Arabic):

يحيى هذا الإشعار معلومات هامة. قد يحيى هذا الإشعار معلومات مهمة بمحتوى طلب أو الملاحظة التي تزيد الحرص عليها من خلال ملاحظات Premera Blue Cross المتاحة في هذه الإشعار. ويعتبر لائحتي إعداد في تواريخ متعددة للاطلاع على الملاحظات الصحية والسلامة للفحص الأولي. يحوي كل الحصور على هذه المعلومات والمساعدة بذلك دون معرفة أي كلمة. يصل 800-722-1471 (TTY: 800-842-5357) 〈العربية〉

Italiano (Italian):

Premera Blue Cross.

In some cases, you may need to take action within a certain period of time to keep your coverage or avoid making a financial payment. For more information, please call 800-722-1471 (TTY: 800-842-5357).

اللغة العربية (العربية):

من فضلك أقرأ النشرة. قد يكون هناك خطوات تحتاج إلى اتخاذها للحفاظ على مغطسك الصحي أو تجنب السماح بالدفع. إذا كنت بحاجة إلى مزيد من المعلومات، الرجاء الاتصال بمهمومهم بروكسل على رقم 800-722-1471 (TTY: 800-842-5357).

La langue française (Français):

Il est possible que cet avertissement contienne des informations importantes. Il peut être nécessaire de prendre des mesures dans un certain délai pour continuer à bénéficier de votre couverture. Pour plus d'informations, veuillez contacter Premera Blue Cross à 800-722-1471 (TTY: 800-842-5357).

El idioma español (Español):

Este aviso puede contener información importante. Puede ser necesario que tome medidas dentro de ciertos plazos para mantener su cobertura o evitar pagos financieros. Para obtener más información, comuníquese con Premera Blue Cross por el número 800-722-1471 (TTY: 800-842-5357).

Polski (Polish):