MEDICAL POLICY – 7.01.554
Surgical Treatment of Snoring and Obstructive Sleep Apnea Syndrome

Effective Date: Mar. 1, 2017
Last Revised: Mar. 30, 2017
Replaces: N/A

RELATED MEDICAL POLICIES:
1.01.524 Positive Airway Pressure (PAP) Devices for the Treatment of Obstructive Sleep Apnea
2.01.503 Polysomnography and Home Sleep Study for Diagnosis of Obstructive Sleep Apnea
2.01.532 Intraoral Appliances for the Treatment of Obstructive Sleep Apnea

Introduction

Obstructive sleep apnea (OSA) is a blockage in the upper part of the airway. The blockage is usually from throat muscles collapsing, the tongue falling into the airway, or large tonsils or adenoids getting in the way of airflow. Positive airway pressure (PAP) devices are very effective in treating sleep apnea. A PAP device works by increasing air pressure in the throat to prevent it from collapsing as a person breathes. When a PAP device doesn’t work or there are certain other medical situations, surgery can be a way to treat sleep apnea. There are a number of different types of surgery, but they generally treat OSA by removing extra tissue in the throat to widen the airway. There are also a number of other surgeries or devices that are still being studied. They are not covered because there is not enough medical evidence to show they work. This policy discusses when medically necessary surgeries for OSA may be approved.

Note: The Introduction section is for your general knowledge and is not to be taken as policy coverage criteria. The rest of the policy uses specific words and concepts familiar to medical professionals. It is intended for providers. A provider can be a person, such as a doctor, nurse, psychologist, or dentist. A provider also can be a place where medical care is given, like a hospital, clinic, or lab. This policy informs them about when a service may be covered.
Policy Coverage Criteria

#### Treatment	Investigational
Implantable hypoglossal nerve stimulators | Implantable hypoglossal nerve stimulators are investigational for all indications, including but not limited to the treatment of obstructive sleep apnea (OSA).

Minimally-invasive surgical procedures | The following minimally-invasive surgical procedures are investigational for the sole or adjunctive treatment of OSA or upper airway resistance syndrome (UARS):
- Radiofrequency volumetric tissue reduction of the tongue (e.g., Somnoplasty), with or without radiofrequency reduction of the palatal tissues
- Laser-assisted palatoplasty (LAUP) or radiofrequency volumetric tissue reduction of the palatal tissues
- Palatal stiffening procedures including, but not limited to, cautery-assisted palatal stiffening operation (CAPSO), injection of a sclerosing agent, and the implantation of palatal implants (e.g. Pillar Procedure)
- Tongue base suspension (e.g. Airvance System, formerly the Repose™ Tongue and Hyoid Suspension System, Encore™ system)
- All other minimally-invasive surgical procedures not described above.

#### Treatment	Not Medically Necessary
All interventions in the absence of documented OSA | All interventions, including LAUP, radiofrequency volumetric tissue reduction of the palate, or palatal stiffening procedures, are considered not medically necessary for the treatment of snoring in the absence of documented OSA; snoring alone is not considered a medical condition.

#### Treatment	Medical Necessity
Uvulopalatopharyngoplasty | UPPP may be considered medically necessary for the
<table>
<thead>
<tr>
<th>Treatment</th>
<th>Medical Necessity</th>
</tr>
</thead>
</table>
| **(UPPP)** | Treatment of clinically significant obstructive sleep apnea syndrome (OSA) in appropriately selected adult patients who have not responded to or do not tolerate nasal continuous positive airway pressure (CPAP).

Note: Clinically significant OSA is defined in the Related Information section. |
| **Hyoid suspension, surgical modification of the tongue, and/or maxillofacial surgery** | Hyoid suspension, surgical modification of the tongue, and/or maxillofacial surgery, including mandibular-maxillary advancement (MMA), may be considered medically necessary in appropriately selected adult patients with clinically significant OSA and objective documentation of hypopharyngeal obstruction who have not responded to or do not tolerate CPAP.

Note: Clinically significant OSA is defined in the Related Information section. |
| **Adenotonsillectomy** | Adenotonsillectomy may be considered medically necessary in pediatric patients with clinically significant OSA and hypertrophic tonsils.

Note: Clinically significant OSA is defined in the Related Information section. |

Coding

<table>
<thead>
<tr>
<th>CPT</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0466T</td>
<td>Insertion of chest wall respiratory sensor electrode or electrode array, including connection to pulse generator (List separately in addition to code for primary procedure) (new code effective 1/1/17)</td>
</tr>
<tr>
<td>0467T</td>
<td>Revision or replacement of chest wall respiratory sensor electrode or electrode array, including connection to existing pulse generator (new code effective 1/1/17)</td>
</tr>
<tr>
<td>0468T</td>
<td>Removal of chest wall respiratory sensor electrode or electrode array (new code effective 1/1/17)</td>
</tr>
</tbody>
</table>
CPT

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21199</td>
<td>Osteotomy, mandible, segmental; with genioglossus advancement</td>
</tr>
<tr>
<td>41512</td>
<td>Tongue base suspension, permanent suture technique</td>
</tr>
<tr>
<td>41530</td>
<td>Submucosal ablation of the tongue base, radiofrequency, 1 or more sites, per session</td>
</tr>
<tr>
<td>42145</td>
<td>Palatopharyngoplasty (e.g. uvulopalatopharyngoplasty, uvulopharyngoplasty)</td>
</tr>
<tr>
<td>42299</td>
<td>Unlisted procedure, palate, uvula</td>
</tr>
<tr>
<td>42950</td>
<td>Pharyngoplasty (plastic or reconstructive operation on pharynx)</td>
</tr>
<tr>
<td>64568</td>
<td>Incision for implantation of cranial nerve (e.g., vagus nerve) neurostimulator electrode array and pulse generator</td>
</tr>
</tbody>
</table>

HCPCS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2080</td>
<td>Laser-assisted uvulopalatoplasty (LAUP)</td>
</tr>
</tbody>
</table>

Note: CPT codes, descriptions and materials are copyrighted by the American Medical Association (AMA). HCPCS codes, descriptions and materials are copyrighted by Centers for Medicare Services (CMS).

Related Information

Continuous positive airway pressure is the preferred first-line treatment for most patients. A smaller number of patients may use oral appliances as a first-line treatment (see Related Policies).

The Apnea/Hypopnea Index is the total number events (apnea or hypopnea) per hour of recorded sleep. The Respiratory Disturbance Index is the total number events (apnea or hypopnea) per hour of recording time. An obstructive apnea is defined as at least a 10-second cessation of respiration associated with ongoing ventilatory effort. Hypopnea is defined as an abnormal respiratory event lasting at least 10 seconds with at least a 30% reduction in thoracoabdominal movement or airflow compared with baseline, and with at least a 4% oxygen desaturation.

Adults

The diagnosis of OSA in adults is confirmed by a sleep study result showing:
- The apneic/hypopneic index (AHI) is greater than or equal to 15 events per hour, including a minimum of 30 events documented per sleep study; or

- The AHI is greater than or equal to 5 events per hour and less than 15 events per hour, including a minimum of 10 events documented per sleep study, AND documentation of:
 - History of stroke; or
 - Hypertension (systolic blood pressure greater than 140 mm Hg and/or diastolic blood pressure greater than 90 mm Hg); or
 - Ischemic heart disease; or
 - Symptoms of impaired cognition, mood disorders, or insomnia; or
 - Excessive daytime sleepiness (documented by either Epworth greater than 10 or MSLT less than 6); or
 - Greater than 20 episodes of desaturation (i.e., oxygen saturation of less than 85%) during a full night sleep study, or any 1 episode of oxygen desaturation (i.e., oxygen saturation of less than 70%); or
 - Obesity (BMI greater than 35)

OSA severity is defined as:
- Mild for AHI greater than 5/hr. and less than 15/hr.
- Moderate for AHI of 15/hr. or greater and 30/hr. or less
- Severe for AHI of greater than 30/hr.

The AHI is the total number events (apnea or hypopnea) per hour of recorded sleep. An obstructive apnea is defined as at least a 10-second cessation of respiration associated with ongoing ventilatory effort. Hypopnea is defined as an abnormal respiratory event lasting at least 10 seconds with at least a 30% reduction in thoracoabdominal movement or airflow as compared to baseline, and with at least a 4% oxygen desaturation.
Children

The presentation of OSA in pediatric patients may differ from that of adults.

The diagnosis of obstructive sleep apnea in children is established by a sleep study result showing an apneic/hypopneic index (AHI) greater than 1.5. (An AHI of 1.5 is considered severe in children.)

Upper airway resistance syndrome (UARS)

Clinically significant upper airway resistance syndrome (UARS) is defined as greater than 10 EEG arousals per hour. The presence of abnormally negative intrathoracic pressures (i.e., more negative than 10 cm) in conjunction with the EEG arousals supports the diagnosis. The measurement of intrathoracic pressures requires the use of an esophageal manometer as an adjunct to a polysomnogram. Objective evidence of hypopharyngeal obstruction is documented by either fiberoptic endoscopy or cephalometric radiographs.

Evidence Review

This policy was originally based on TEC Assessments on the surgical management and radiofrequency volumetric tissue reduction of obstructive sleep apnea (OSA) and updated with periodic literature searches. The most recent literature review was performed through October 4, 2016.

Description

Obstructive sleep apnea (OSA) syndrome is characterized by repetitive episodes of upper airway obstruction due to the collapse of the upper airway during sleep. For patients who have failed conservative therapy, established surgical approaches may be indicated. This policy addresses minimally invasive surgical procedures for the treatment of OSA. They include laser-assisted uvuloplasty, tongue base suspension, radiofrequency volumetric reduction of palatal tissues and base of tongue, palatal stiffening procedures, and hypoglossal nerve stimulation. This policy
does not address conventional surgical procedures such as uvulopalatopharyngoplasty, hyoid suspension, surgical modification of the tongue, maxillofacial surgery, or adenotonsillectomy.

For individuals who have OSA who receive laser-assisted uvulopalatoplasty, tongue base suspension, radiofrequency volumetric reduction of palatal tissues and base of tongue, palatal stiffening procedures, or hypoglossal nerve stimulation, the evidence includes case series, cohort studies, and randomized controlled trials (RCTs). Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. The evidence on nearly all of the minimally invasive surgical procedures reviewed herein has shown limited efficacy in patients with mild-to-moderate OSA and has not improved Apnea-Hypopnea Index (AHI) or excessive daytime sleepiness in adults with moderate-to-severe OSA. Hypoglossal nerve stimulation has shown improved outcomes in single arm studies when used in a very select group of patients. In the largest study to date, two-thirds of patients who met inclusion criteria for AHI, body mass index, and favorable pattern of palatal collapse met the study definition of success. However, the role of nerve stimulation among the surgical procedures for OSA treatment is uncertain. RCTs comparing hypoglossal nerve stimulation to conventional surgical procedures are needed to evaluate benefits and harms. The evidence is insufficient to determine the effects of the technology on health outcomes.

Background

Obstructive sleep apnea (OSA) is characterized by repetitive episodes of upper airway obstruction due to the collapse and obstruction of the upper airway during sleep. In patients with OSA, the normal pharyngeal narrowing may be accentuated by anatomic factors, such as a short, fat “bull” neck, elongated palate and uvula, and large tonsillar pillars with redundant lateral pharyngeal wall mucosa. In addition, OSA is associated with obesity. OSA may also be associated with a variety of craniofacial abnormalities, including micrognathia, retrognathia, or maxillary hypoplasia. Obstruction anywhere along the upper airway can result in apnea.

The hallmark symptom of OSA is excessive daytime sleepiness, and the typical clinical sign of OSA is snoring, which can abruptly cease and be followed by gasping associated with a brief arousal from sleep. The snoring resumes when the patient falls back to sleep, and the cycle of snoring/apnea/arousal may be repeated as frequently as every minute throughout the night. Sleep fragmentation associated with the repeated arousal during sleep can lead to impairment of daytime activity. For example, adult patients with OSA-associated daytime somnolence are thought to be at higher risk for accidents involving motorized vehicles, i.e., cars, trucks, or heavy
equipment. OSA in children may result in neurocognitive impairment and behavioral problems. In addition, OSA affects the cardiovascular and pulmonary systems. For example, apnea leads to periods of hypoxia, alveolar hypoventilation, hypercapnia, and acidosis. This in turn can cause systemic hypertension, cardiac arrhythmias, and cor pulmonale. Systemic hypertension is common in patients with OSA. Severe OSA is also associated with decreased survival, presumably related to severe hypoxemia, hypertension, or an increase in automobile accidents related to overwhelming sleepiness.

Diagnosis

The final diagnosis of OSA rests on a combination of clinical evaluation and objective criteria to identify those levels of obstruction that are considered to be clinically significant (see Related Policies). The gold standard diagnostic test for sleep disorders is considered a polysomnogram, which includes sleep staging to assess arousals from sleep, and determination of the frequency of apneas and hypopneas from channels measuring oxygen desaturation, respiratory airflow, and respiratory effort. An obstructive apnea is defined as at least a 10-second drop in respiration (at least 90% drop of peak signal excursion) associated with ongoing ventilatory effort. Obstructive hypopnea is a 30% or greater reduction of air exchange with an associated fall in oxygen saturation of at least 34%. Respiratory event-related arousals (RERAs) are scored if there is a sequence of breaths lasting at least 10 seconds characterized by increasing respiratory effort or flattening of the nasal pressure waveform leading to an arousal from sleep when the sequence of breaths does not meet criteria for an apnea or hypopnea. The apnea/hypopnea index (AHI) is defined as the total number of apneas and hypopneas per hour of sleep. The respiratory disturbance index (RDI) may be defined as the number of apneas, hypopneas, and RERAs per hour of sleep. When sleep onset and offset are unknown (e.g., in home sleep studies), the RDI may be calculated based on the number of apneas and hypopneas per hour of recording time. OSA is considered to be clinically significant when an adult patient has an AHI greater than 5 and symptoms of excessive daytime sleepiness or unexplained hypertension. An AHI greater than or equal to 15 is typically considered moderate OSA, while an AHI greater than 50 is considered severe OSA. Due to faster respiratory rates in children, pediatric scoring criteria define an apnea as 2 or more missed breaths, regardless of its duration in seconds. Hypopneas are scored by a 50% or greater drop in nasal pressure and either an equal to or greater than 3% decrease in oxygen saturation or an associated arousal. In pediatric patients, an AHI greater than 1.5 is considered abnormal, and an AHI of 15 or more is considered severe.
A condition related to OSA has been termed upper airway resistance syndrome (UARS). UARS is characterized by a partial collapse of the airway resulting in increased resistance to airflow. The increased respiratory effort is associated with multiple sleep fragmentations, as measured by very short alpha electrocardiogram (EEG) arousals (RERAs). UARS can occur in the absence of snoring and in patients who are not overweight. The resistance to airflow is typically subtle and does not result in apneic or hypopneic events. However, increasingly negative intrathoracic pressure during inspiration can be measured using an esophageal manometer. RERAs can also be detected absent manometry during polysomnography. It has been proposed that UARS is a distinct syndrome from OSA that may be considered a disease of arousal. In the absence of intrathoracic pressure monitoring, a positive response to continuous positive airway pressure (CPAP) has also been used to support the diagnosis.

Treatment

Nonsurgical Treatments

Nonsurgical treatment for OSA or UARS includes CPAP or orthodontic repositioning devices, which are addressed in a separate medical policy (see Related Policies). Traditional surgeries for OSA or UARS include uvulopalatopharyngoplasty (UPPP) and a variety of maxillofacial surgeries such as mandibular-maxillary advancement (MMA). UPPP involves surgical resection of the mucosa and submucosa of the soft palate, tonsillar fossa, and the lateral aspect of the uvula. The amount of tissue removed is individualized for each patient as determined by the potential space and width of the tonsillar pillar mucosa between the two palatal arches. The UPPP enlarges the oropharynx but cannot correct obstructions in the hypopharynx. Thus, patients who fail UPPP may be candidates for additional procedures, depending on the site of obstruction. Additional procedures include hyoid suspensions, maxillary and mandibular osteotomies, or modification of the tongue. Fiberoptic endoscopy and/or cephalometric measurements have been used as methods to identify hypopharyngeal obstruction in these patients. The first-line treatment in children is usually adenotonsillectomy. Minimally invasive surgical approaches being evaluated for OSA in adults include the following:

Laser-assisted Uvulopalatoplasty (LAUP)

LAUP is an outpatient alternative that has been proposed as a treatment of snoring with or without associated OSA. In this procedure, superficial palatal tissues are sequentially reshaped using a carbon dioxide laser. The extent of the surgery is typically different than standard UPPP,
since only part of the uvula and associated soft-palate tissues are reshaped. The procedure, as initially described, does not remove or alter tonsils or lateral pharyngeal wall tissues. The patient undergoes from 3 to 7 sessions at 3- to 4-week intervals. One purported advantage of LAUP is that the amount of tissue ablated can be titrated such that the treatment can be discontinued once snoring is eliminated. LAUP cannot be considered an equivalent procedure to the standard UPPP, with the laser simply representing a surgical tool that the physician may opt to use. LAUP is considered a unique procedure, which raises its own issues of safety and, in particular, effectiveness.

Tongue Base Suspension

In the tongue base suspension procedure, the base of the tongue is suspended with a suture that is passed through the tongue and then fixated with a screw to the inner side of the mandible, below the tooth roots. The aim of the suspension is to make it less likely for the base of the tongue to prolapse during sleep.

Radiofrequency Ablation (RFA) of Palatal Tissues and the Tongue

RFA of the soft palate is similar in concept to LAUP, although a different energy source is used. Radiofrequency is used to produce thermal lesions within the tissues rather than using a laser to ablate the tissue surface, which may be painful. For this reason, RFA appears to be growing in popularity as an alternative to LAUP. In some situations, radiofrequency of the soft palate and base of tongue are performed together as a multilevel procedure.

Palatal Stiffening

Palatal stiffening procedures include insertion of palatal implants, injection of a sclerosing agent (snoreplasty), or a cautery-assisted palatal stiffening operation (CAPSO). The CAPSO procedure uses cautery to induce a midline palatal scar designed to stiffen the soft palate to eliminate excessive snoring. The palatal implant device is a cylindrical-shaped segment of braided polyester filaments that is permanently implanted submucosally in the soft palate.
Hypoglossal Nerve Stimulation

Stimulation of the hypoglossal nerve contracts the genioglossus muscle, the largest upper airway dilator muscle. This causes tongue protrusion and stiffening of the anterior pharyngeal wall, potentially decreasing apneic events. Hypoglossal nerve stimulation systems include an implantable neurostimulator, stimulating leads, and electrodes. Stimulation systems such as the Inspire II Upper Airway Stimulation System include respiratory sensing leads that permit intermittent stimulation during inspiration. Stimulation parameters are titrated during an in-laboratory polysomnography and can be adjusted by the patient during home use. The device is turned on only during sleep periods.

Laser-Assisted Uvulopalatoplasty (LAUP)

Ferguson et al reported on a randomized controlled trial (RCT) that allocated 45 subjects with mild-to-moderate sleep apnea (defined as an Apnea-Hypopnea Index (AHI) ranging between 10 and 27 events per hour) to either laser-assisted uvulopalatoplasty (LAUP) or no treatment. The LAUP procedure was repeated at 1- to 2-month intervals until either the snoring was significantly reduced, no more tissue could safely be removed, or the patient refused further procedures. The primary outcome measurement was the reduction in AHI in the LAUP group versus the control group. An AHI of less than 10 was considered successful treatment. In the treatment group, 24% were considered treatment successes and 76% were failures. In the control group (no therapy), 16.7% were considered treatment successes. The authors concluded that LAUP can be effective in some patients, but the reduction in AHI and the level of symptomatic improvement were minor overall.

Tongue Base Suspension

In 2014, Handler et al reported a systematic review of tongue suspension versus hypopharyngeal surgery for the treatment of OSA. The review included 27 studies reporting on 4 separate procedures: tongue suspension alone, tongue suspension plus uvulopalatopharyngoplasty (UPPP), genioglossus advancement (GA) plus UPPP, and genioglossus advancement plus hyoid suspension (GAHM) plus UPPP. A successful treatment was defined as a 50% decrease in the Respiratory Disturbance Index (RDI) or AHI and a postoperative RDI or AHI of less than 20 events per hour. Tongue suspension alone (6 studies, 82 patients) had a success rate of 36.6%, while the success rate of tongue suspension plus UPPP
(8 studies, 167 patients) was 62.3%. Success rates of 61.1% each were found for GA plus UPPP (7 studies, 151 patients) and for GAHM plus UPPP (12 studies, 467 patients). The adverse effects of tongue suspension appear to be milder than GA or GAHM and are reversible. Most studies identified in this review were level IV evidence (case series). RCTs are needed to determine whether tongue suspension alone or added to UPPP improves the net health outcome compared with UPPP alone.

Radiofrequency Volumetric Reduction of Palatal Tissues and Base of Tongue

The policy on radiofrequency volumetric tissue reduction (i.e., Somnoplasty®) was originally based on a 2000 TEC Assessment of 4 primary studies on palatal RFA and 1 study on tongue base RFA. All studies were nonrandomized.

In 2008, Farrar et al published a meta-analysis of RFA for the treatment of OSA in patients with an RDI of 5 or more events per hour. Sixteen studies met the inclusion criteria; 3 were randomized and 13 were nonrandomized. Six studies treated both the base of the tongue and the soft palate, 2 treated the soft palate only, and 8 ablated the base of the tongue only. In half of the studies, the average baseline RDI was less than 30, and in 6 of the studies, the average baseline Epworth Sleepiness Scale (ESS) score was less than 10. Meta-analysis indicated a 31% reduction in both ESS and RDI. Only 2 of the studies provided 2-year follow-up, with a 32% reduction in ESS score and a 45% reduction in RDI.

A single-blinded RCT of single-stage radiofrequency surgery of the soft palate was reported by Back et al in 2009. Thirty-two patients with mild OSA and excessive daytime sleepiness were randomized to a single session of RFA or sham ablation. There was no difference between groups for baseline to post-treatment changes in ESS score (3-point improvement in ESS scores for both groups), reports of snoring (1-point improvement in both groups), AHI (no clinically significant change), or any other outcome measure. None of the patients reported any treatment-related symptoms or complications 4 months after treatment.

Section Summary

The evidence on radiofrequency volume reduction includes a meta-analysis (3 RCTs, 13 non-RCTs) and a more recent sham-controlled RCT. The meta-analysis was limited by the inclusion of
uncontrolled studies. An RCT of single-stage RFA found no difference in outcomes compared to sham treatment.

Palatal Stiffening Procedures

Cautery-Assisted Palatal Stiffening Operation (CAPSO)

There is limited evidence on cautery-assisted palatal stiffening operation (CAPSO) in patients with clinically significant OSA; most studies of CAPSO have focused on patients with simple snoring (AHI <5 events per hour) or mild sleep apnea (AHI <15 events per hour). In 2000, Wassmuth et al reported a case series of 25 patients with OSA who underwent CAPSO. Responders were defined as patients who had a reduction in AHI of at least 50%. Mean AHI improved from 25.1±12.9 to 16.6±15.0. The broad confidence intervals limit interpretation of these data.

Palatal Implants

In a 2008 trial by Steward et al., 100 patients with mild to moderate OSA and suspected retropalatal obstruction were randomly assigned to palatal implants or sham placebo. Patients with BMI greater than 32 kg/m2 were excluded from the study. About 1,000 patients were evaluated to identify the 100 study patients. At 3 months’ follow-up, the average AHI increased in both groups from a baseline of about 17, although the increase was greater in the placebo group (8.9 vs. 2.9, respectively). A reduction in AHI by at least 50% or to below 20 was more common in the implant group (26% vs. 10%, respectively; p=0.05). Improvement in ESS did not differ from that of sham (p=0.62). Partial implant extrusion occurred in 2 patients (4%).

Friedman et al. reported an industry-sponsored randomized double-blind, sham-controlled trial of palatal implants in 62 patients with symptoms of OSA. Other inclusion criteria included: Friedman tongue position I, II, or III; diagnosis of mild to moderate OSA (AHI >5 and <40) on baseline PSG; a soft palate of 2 cm or more but less than 3.5 cm; and body mass index (BMI) less than 32 kg/m2. AHI at baseline was 23.8 events per hour in the implant group and 20.1 in controls. Seven patients did not return for repeat PSG and were considered treatment failures in the intent-to-treat (ITT) analysis. At 3-month follow-up, the AHI improved to 15.9 events per hour in the implant group but did not change significantly in the controls (21.0). The ESS improved from 12.7 to 10.2 in the implant group and did not change significantly in the controls (from 11.7 to 11.1). With success defined as an AHI reduction of 50% or more and AHI less than
20, palatal implantation resulted in the successful treatment of 41.9% of implanted patients compared with 0% of controls. Two patients had partial implant extrusion.

In 2012, Maurer and colleagues reported a randomized, double-blind, sham-controlled trial of the Pillar palatal implant in 20 patients with mild to moderate OSA due to palatal obstruction. At 90 days, the AHI in the treatment group improved from 19.1 to 8.2 events per hour and lowest oxygen saturation improved from 82.8 to 88.3%. These measures did not improve significantly in the control group, and there was no significant difference in outcomes between the implant and control groups in this small trial. The ESS did not improve significantly in either group.

There are also uncontrolled series of patients treated with palatal implants. For example, Walker and colleagues published 90-day and 15-month follow-up from a multicenter study on palatal implants (Pillar System) in 63 subjects. The AHI decreased from a baseline of 25 to 22 in the 53 patients (84%) who were evaluated at 90 days. Twenty-two patients (35%) were available for the follow-up study; 13 had shown a decrease in AHI (from a baseline of 20 to 13) at 90 days. Of these, 10 (77% of the 13) maintained the decrease at 15 months. The 9 patients whose AHI had not improved at 90 days had no subsequent improvement at the extended follow-up. Mean snoring was rated as 8 at baseline (visual analogue scale [VAS]), and 4 at both 90 days and 15 months. Subjective daytime sleepiness measured by the ESS was reduced at 90 days (from 11 to 7) but returned to a score of 11 at the longer follow-up. In addition to the very large loss to follow-up, questions remain about the clinical significance of a 3- to 7-point improvement in AHI.

Neruntarat reported a case series with a minimum of 24-month follow-up. This study included 92 patients with mild to moderate OSA (AHI < 30 with daytime sleepiness or disturbed sleep) who had received palatal implants after failed medical management. At baseline, the mean AHI was 21.7 events per hour, and the lowest oxygen saturation was 87.4%. At mean 28.9-month follow-up, the AHI had decreased to 10.8, and the lowest oxygen saturation improved to 89.2%. Sleep efficiency improved from 80.6% to 87.2%, and the ESS score improved from a mean of 12.3 to 7.9. Implant extrusion occurred in 7 patients (7.6%), and palatal abscess occurred in 1 patient (1.1%).

Section Summary

The literature on palatal implants consists of 3 RCTs and case series with medium-term follow-up. Evidence from sham-controlled trials has shown a statistically significant but modest reduction in AHI and improvement in lowest oxygen saturation compared with placebo, with
limited effects on daytime sleepiness. Additional study is needed to determine whether there is a defined subset of patients who might benefit from this procedure. Studies with longer term follow-up are also needed to evaluate the long-term risk of implant extrusion.

Hypoglossal Nerve Stimulation

In 2014, the STAR Trial Group reported 12-month outcomes from an industry-sponsored multicenter, single-arm study (n=126) of the Inspire Upper Airway Stimulation system.\(^{16}\) Eighteen-month outcomes were reported in 2015 and 2- and 3-year outcomes were reported in 2016.\(^{17-19}\) Patients were included if their AHI from the screening PSG was at least 20 and no more than 50 events per hour, their BMI was 32 kg/m\(^2\) or less, they had failed conservative therapy, and drug-induced sleep endoscopy showed a favorable pattern of palatal collapse (not complete concentric retropalatal obstruction). Stimulation parameters of the devices were titrated in the sleep laboratory with full PSG. At 12 months after implantation, 66% of participants met the coprimary outcome of at least a 50% decrease in AHI, with a final AHI of less than 20 events per hour, and 75% met the coprimary outcome of a reduction in the Oxygen Desaturation Index (ODI) score of 25% or more. The median AHI decreased from 29.3 to 9.0 events per hour. Mean ESS score decreased from 11.6 to 7.0.

The first 46 patients who responded to therapy were then randomized to continued therapy or withdrawal from therapy for 1 week.\(^{20}\) After 7 days, the mean AHI of the continued treatment group remained stable, whereas the mean AHI of the withdrawal group increased from 7.6 to 25.8 and ODI score increased from 6.0 to 23.0. Eighteen percent of participants had temporary tongue weakness and 21% reported tongue soreness, including abrasion, which resulted from stimulation-induced tongue motion over the lower teeth. For the 18-month follow-up PSG, AHI and ODI scores had returned to levels observed at 12 months.

Of the original 126 patients enrolled, 116 (92%) completed 36-month follow-up and 98 (78%) patients agreed to 36-month PSG. For the remainder, the last value from the 12- or 18-month PSG was carried forward. Daily use was reported in 81% of patients. AHI was reduced from a median of 28.2 at baseline to 7.3 at 36 months, with 65% of patients meeting the definition of success described above. An AHI less than 5 events per hour was observed in 44% of patients, while an AHI less than 10 was observed in 69% of patients. An ESS score of less than 10 was reported in 15% of patients at baseline compared to 77% at 36 months. A normal Functional Outcomes of Sleep Questionnaire score (>17.9) was reported for 15% of patients at baseline compared to 63% at 36 months. Soft or no snoring as reported by the bed partner increased from 17% at baseline to 80% at 36 months. There was 1 elective device explantation due to
insomnia. Tongue abrasions due to tongue movement along the teeth were successfully treated with adjustment of the stimulation or plastic dental guards.

A series of 31 patients implanted with the Apnex hypoglossal nerve stimulation system (HGNS) was reported in 2014.21 Apnex Medical terminated its pivotal study (see Table 1) and ceased operations when it was determined that the trial was unlikely to meet its primary end point.

A 2015 systematic review identified 6 case series with a total of 200 patients who received hypoglossal nerve stimulation.22 No comparative trials were identified. Two series were identified on the Inspire II System and included the STAR trial (previously described). Three series were identified with the HGNS system and included the 2014 study of 31 patients previously described. One series of 13 patients who received the Aura6000 System was identified. When data were combined for meta-analysis, AHI and ODI scores improved by a little over 50% (e.g., AHI from 44 to 20 events per hour, ODI scores from 21 to 10), and ESS scores improved from 12 to 7. All selected studies described minor complications such as tongue weakness, tongue soreness, pain/swelling at the neck incision, fever, and lack of tongue response to stimulation. Of the 200 patients, 9 (4.5%) had serious device-related adverse events that led to removal of the stimulator.

\textit{Section Summary}

The evidence on hypoglossal nerve stimulation for the treatment of OSA includes case series and one prospective cohort of about 100 patients followed for 3 years. For patients who had failed conservative therapy and met the inclusion criteria for AHI, BMI, and favorable pattern of palatal collapse, about two-thirds met the study definition of success. Results observed at the 12-month follow-up were maintained at 3 years. However, the comparative efficacy of this procedure relative to established OSA treatment options is uncertain. Additional study comparing hypoglossal nerve stimulation to established surgical procedures is needed to permit conclusions on the effect of this treatment on health outcomes.

\textbf{Ongoing and Unpublished Clinical Trials}

Some currently unpublished trials that might influence this review are listed in Table 1.
Table 1. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT02293746<sup>a</sup></td>
<td>Inspire® Upper Airway Stimulation (UAS) System German Post-Market Study: CE Certificate Number 562872</td>
<td>60</td>
<td>April 2016 (ongoing)</td>
</tr>
<tr>
<td>NCT02907398<sup>a</sup></td>
<td>Adherence and Outcome of Upper Airway Stimulation (UAS) for OSA International Registry</td>
<td>2500</td>
<td>Sep 2019</td>
</tr>
<tr>
<td>NCT02263859<sup>a</sup></td>
<td>ImThera Medical Targeted Hypoglossal Neurostimulation Study #3 (THN3)</td>
<td>141</td>
<td>May 2021</td>
</tr>
<tr>
<td>NCT02413970</td>
<td>Inspire® Upper Airway Stimulation System (UAS): Post-Approval Study Protocol Number 2014-001</td>
<td>127</td>
<td>Dec 2021</td>
</tr>
<tr>
<td>NCT01446601<sup>a</sup></td>
<td>Pivotal Study of the Apnex Medical™ Hypoglossal Nerve Stimulation (HGNS) System to Treat Obstructive Sleep Apnea</td>
<td>132</td>
<td>Aug 2013 (terminated)</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.
^a Denotes industry-sponsored or cosponsored trial.

Summary of Evidence

For individuals who have obstructive sleep apnea (OSA) who receive laser-assisted uvulopalatoplasty, tongue base suspension, radiofrequency volumetric reduction of palatal tissues and base of tongue, palatal stiffening procedures, or hypoglossal nerve stimulation, the evidence includes case series, cohort studies, and randomized controlled trials (RCTs). Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. The evidence on nearly all of the minimally invasive surgical procedures reviewed herein has shown limited efficacy in patients with mild-to-moderate OSA and has not improved Apnea-Hypopnea Index (AHI) or excessive daytime sleepiness in adults with moderate-to-severe OSA. Hypoglossal nerve stimulation has shown improved outcomes in single arm studies when used in a very select group of patients. In the largest study to date, two-thirds of patients who met inclusion criteria for AHI, body mass index, and favorable pattern of palatal collapse met the study definition of success. However, the role of nerve stimulation among the surgical
procedures for OSA treatment is uncertain. RCTs comparing hypoglossal nerve stimulation to conventional surgical procedures are needed to evaluate benefits and harms. The evidence is insufficient to determine the effects of the technology on health outcomes.

Practice Guidelines and Position Statements

American Academy of Sleep Medicine (AASM)

The American Academy of Sleep Medicine (AASM) published practice parameters for surgical modifications of the upper airway for obstructive sleep apnea (OSA) in 2010. AASM practice parameters were based on a systematic review of the evidence that found that the published literature was comprised primarily of case series, with few controlled trials and varying approaches to preoperative evaluation and postoperative follow-up. Using the change in Apnea-Hypopnea Index (AHI) as the primary measure of efficacy, substantial and consistent reductions were observed following mandibular-maxillary advancement (MMA), and adverse events were uncommonly reported. Outcomes following pharyngeal surgeries were less consistent, and adverse events were more commonly reported. The review found that outcomes of studies with newer pharyngeal techniques and multilevel procedures, performed in small numbers of patients, appear promising. The practice parameters noted the lack of rigorous data evaluating surgical modifications of the upper airway, resulting in a recommendation of “option” (uncertain clinical use) for MMA, uvulopalatopharyngoplasty (UPPP) as a sole procedure, or multilevel or stepwise surgery if patients failed UPPP as a sole treatment. Use of radiofrequency ablation was recommended as an “option” for patients with mild-to-moderate OSA who cannot tolerate or are unwilling to adhere to continuous positive airway pressure (CPAP), or in whom oral appliances have been found ineffective or undesirable. Palatal implants were recommended as an “option” for patients with mild OSA who failed medical therapy. Laser-assisted uvulopalatoplasty was not recommended as a routine treatment for OSA (standard). The practice parameters recommended as “standard” the need to determine the presence and severity of OSA before initiating surgical therapy, discussion of success rates, complications, and alternative treatments with the patient, and a postoperative follow-up evaluation, which includes a clinical evaluation and an objective measure of the presence and severity of sleep-disordered breathing and oxygen saturation. However, little guidance was available in the medical literature to recommend any particular monitoring strategy. The optimal interval and duration of this follow-up were also not clear from the available literature.
The American Academy of Pediatrics (AAP)

The AAP published a 2012 clinical practice guideline on the diagnosis and management of childhood OSA. AAP recommends that if a child has OSA, a clinical examination consistent with adenotonsillar hypertrophy, and does not have a contraindication to surgery, the clinician should recommend adenotonsillectomy as the first line of treatment. AAP recommends that patients should be referred for CPAP management if symptoms/signs or objective evidence of OAS persists after adenotonsillectomy or if adenotonsillectomy is not performed. Weight loss should be recommended in addition to other therapy if a child/adolescent with OSA is overweight or obese.

The American Academy of Otolaryngology - Head and Neck Surgery (AAO-HNS)

The American Academy of Otolaryngology–Head and Neck Surgery (AAO-HNS) has a 2014 revised policy statement on surgical management of OSA. Procedures AAO-HNS supported as effective and not considered investigational when part of a comprehensive approach in the medical and surgical management of adults with OSA include tracheotomy, nasal and pharyngeal airway surgery, tonsillectomy and adenoidectomy, palatal advancement, UPPP, uvulopalatoplasty (including laser-assisted and other techniques), genioglossal advancement, hyoid myotomy, midline glossectomy, tongue suspension, and maxillary and mandibular advancement.

In its 2012 position statement on UPPP, AAO-HNS concluded that UPPP is a valid treatment of OSA. Simultaneous and serial surgical procedures were considered medically necessary and effective for patients with mild to severe obstructive sleep apnea. Another 2012 position statement recommended tongue suspension as effective when considered as part of a comprehensive approach in the medical and surgical management of adult patients with mild OSA and in adult patients with moderate and severe OSA who have evidence of tongue base or associated hypopharyngeal obstruction. AAO-HNS notes that results appear to diminish in obese patients, and this technique should receive a weaker recommendation for these patients.

In 2011, AAO-HNS published clinical practice guidelines on polysomnography (PSG) for sleep-disordered breathing before tonsillectomy in children. In addition to recommendations for PSG (see Related Policies), AAO-HNS made the following recommendation: clinicians should admit children with OSA documented on PSG for inpatient, overnight monitoring after tonsillectomy if
they are younger than age 3 years or have severe OSA (AHI ≥10, oxygen saturation nadir <80% or both).

American Society for Metabolic and Bariatric Surgery

In 2012, the American Society for Metabolic and Bariatric Surgery published guidelines on the perioperative management of OSA. The guideline states that OSA is strongly associated with obesity with the incidence of OSA in the morbidly obese population being reported to be between 38% and 88%. They recommend bariatric surgery be the initial treatment of choice for OSA in this population, as opposed to surgical procedures directed at the mandible or tissues of the palate.

Medicare National Coverage

In 2001, the Centers for Medicare and Medicaid Services (CMS) published a decision memorandum for CPAP that addressed the issue of how to define moderate to severe OSA as a guide to a coverage policy for CPAP. Since surgical approaches are considered when CPAP fails, the Medicare policy has been adapted to this policy on surgical management of OSA. The Medicare review of the literature suggested that there is a risk of hypertension with an AHI greater than 15, and thus treatment is warranted for these patients without any additional signs and symptoms. For patients with an AHI between 5 and 15 and associated symptoms, the CMS document concluded that the data from 3 RCTs demonstrated improved daytime somnolence and functioning in those treated with CPAP.

Regulatory Status

In 1998, the Somnoplasty® device was cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process for radiofrequency ablation of palatal tissues for simple snoring and for the base of the tongue for obstructive sleep apnea (OSA). FDA product code: GEI.

In 1999, AIRvance® (Medtronic; formerly the Repose™ Bone Screw System from Influence) was cleared for marketing by FDA though the 510(k) process for anterior tongue base suspension by fixation of the soft tissue of the tongue base to the mandible bone using a bone screw with
prethreaded suture. It is indicated for the treatment of OSA and/or snoring. In 2011, the Encore™ Tongue Suspension System (Siesta Medical) was cleared for marketing by FDA through the 510(k) process. FDA determined that this device was substantially equivalent to the PRELUDE III Tongue Suspension System (Siesta Medical). FDA product codes: LRK, ORY.

The Pillar® Palatal Implant System (Restore Medical, St. Paul, MN, acquired by Medtronic, Minneapolis, MN), an implantable device, was cleared for marketing by FDA through the 510(k) process. The labeled indication of the device is as follows: “The Pillar® Palatal Implant System is intended for the reduction of the incidence of airway obstructions in patients suffering from mild to moderate OSA (obstructive sleep apnea).” FDA product code: LRK.

In 2014, the Inspire® II Upper Airway Stimulation System (Inspire Medical Systems) was approved by FDA through the premarket approval process. In 2011, Apnex Medical received FDA approval to conduct a randomized investigational device exemption (IDE) trial for the Hypoglossal Nerve Stimulation (HGNS®) System. The trial was terminated and Apnex Medical has ceased operations. In 2014, ImThera Medical received FDA approval to conduct an IDE trial with the aura6000®.

References

History

<table>
<thead>
<tr>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/14/14</td>
<td>New PR policy replacing 7.01.101. Medically necessary criteria for OSA diagnosis expanded to include a threshold of an AHI of 15-30 events as a specific criterion. When the AHI is 5-15, an additional requirement of documentation to evidence: stroke, hypertension, ischemic heart disease; or, symptoms of impaired cognition/mood disorder/insomnia; or, Epworth sleep scale greater than 10 or MSLT less than 6 to evidence daytime sleepiness; or, more than 20 episodes of desaturation; or obesity (BMI over 35). When the AHI is greater than 30, the patient must be able to tolerate PAP or it must be contraindicated. Criteria for children updated to an apneic/hypopneic index (AHI) greater than 1.5. ICD-9 and ICD-10 procedure and diagnosis codes removed; they are not utilized in adjudication. Policy effective subsequent to 2.01.532 effective October 23, 2014. Added investigational policy statement for implantable hypoglossal nerve stimulators.</td>
</tr>
<tr>
<td>10/23/14</td>
<td>Reissue policy as updates are now effective; reference to previous version removed.</td>
</tr>
<tr>
<td>06/17/15</td>
<td>Annual Review. No change to policy statements. Informational CPT codes removed; these are not reviewed.</td>
</tr>
<tr>
<td>02/09/16</td>
<td>Annual Review. Policy updated with literature review through January, 2016; reference 31 added; policy statements unchanged.</td>
</tr>
<tr>
<td>02/14/17</td>
<td>Annual review. Policy updated with literature review through October 4, 2016; references 17-20 added. Coding update; added codes, including new CPT codes effective 1/1/17. No change to policy statements.</td>
</tr>
<tr>
<td>03/30/17</td>
<td>Policy moved into new format; no change to policy statements.</td>
</tr>
</tbody>
</table>
Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. The Company adopts policies after careful review of published peer-reviewed scientific literature, national guidelines and local standards of practice. Since medical technology is constantly changing, the Company reserves the right to review and update policies as appropriate. Member contracts differ in their benefits. Always consult the member benefit booklet or contact a member service representative to determine coverage for a specific medical service or supply. CPT codes, descriptions and materials are copyrighted by the American Medical Association (AMA). ©2017 Premera All Rights Reserved.

Scope: Medical policies are systematically developed guidelines that serve as a resource for Company staff when determining coverage for specific medical procedures, drugs or devices. Coverage for medical services is subject to the limits and conditions of the member benefit plan. Members and their providers should consult the member benefit booklet or contact a customer service representative to determine whether there are any benefit limitations applicable to this service or supply. This medical policy does not apply to Medicare Advantage.
Discrimination is Against the Law

Premera Blue Cross complies with applicable Federal civil rights laws and does not discriminate on the basis of race, color, national origin, age, disability, or sex. Premera does not exclude people or treat them differently because of race, color, national origin, age, disability or sex.

Premera:
• Provides free aids and services to people with disabilities to communicate effectively with us, such as:
 • Qualified sign language interpreters
 • Written information in other formats (large print, audio, accessible electronic formats, other formats)

• Provides free language services to people whose primary language is not English, such as:
 • Qualified interpreters
 • Information written in other languages

If you need these services, contact the Civil Rights Coordinator.

If you believe that Premera has failed to provide these services or discriminated in another way on the basis of race, color, national origin, age, disability, or sex, you can file a grievance with:

Civil Rights Coordinator - Complaints and Appeals
PO Box 91102, Seattle, WA 98111
To file a grievance, the Civil Rights Coordinator is available to help you.

You can file a grievance in person or by mail, fax, or email. If you need help filing a grievance, the Civil Rights Coordinator is available to help you.

You can also file a civil rights complaint with the U.S. Department of Health and Human Services, Office for Civil Rights, electronically through the Office for Civil Rights Complaint Portal, available at: https://ocrportal.hhs.gov/ocr/portal/lobby.jsf, or by mail or phone at:

200 Independence Avenue SW, Room 509F, HHH Building
Washington, D.C. 20201
Fax 800-368-1019, 800-537-7697 (TDD)
Email AppealsDepartmentInquiries@Premera.com

You can file a grievance in person or by mail, fax, or email. If you need help filing a grievance, the Civil Rights Coordinator is available to help you.

You can also file a civil rights complaint with the U.S. Department of Health and Human Services, Office for Civil Rights, electronically through the Office for Civil Rights Complaint Portal, available at:

Getting Help in Other Languages

This Notice has Important Information. This notice may have important information about your application or coverage through Premera Blue Cross. There may be key dates in this notice. You may need to take action by certain deadlines to keep your health coverage or help with costs. You have the right to get this information and help in your language at no cost. Call 800-722-1471 (TTY: 800-842-5357).

Arabic (Amharic):

لا تتقاضى رسوم من أي وارد المطالبة بخدمات مهتمة بالዶاء للحصول على هذا الادعاء.

العربية (Arabic):

يجب أن يحتوي هذا الإشعار خدمات مفيدة مخصصة لديك أو

العربية (Arabic):

أياء هذا الإشعار خدمات مفيدة مخصصة لديك أو

Italiano (Italian):

Questo avviso contiene informazioni importanti. Questo avviso può contene informazioni importanti sulla tua domanda o copertura attraverso Premera Blue Cross. Potrebbero esserci date chiave in questo avviso. Potrebbe essere necessario un tuo intervento entro una scadenza determinata per consentirti di mantenere la tua copertura o sovvenzione. Hai il diritto di ottenere queste informazioni e assistenza nella tua lingua gratuitamente.

Chiamare 800-722-1471 (TTY: 800-842-5357).

037338 (07-2016)
Preámbulo notificará información importante. Esta notificación puede contener información importante privada, pero no es un acuerdo de formalización. Debe leerlo de manera detallada y en su propio idioma. Puede ser necesario notificarle a alguien importante a quien se le puede dar esta información.

Română (Romanian):

Tiếng Việt (Vietnamese):

Український (Ukrainian):

Це повідомлення містить важливу інформацію. Це повідомлення може містити важливу інформацію про Ваше звернення щодо страхувального покриття через Premera Blue Cross. Зверніть увагу на ключові дати, які можуть бути вказані у цьому повідомленні. Існує імовірність того, що Вам треба буде здійснити деякі кроки у конкретні кінцеві строки для того, щоб зберегти Ваше медичне страхування або отримати фінансову допомогу. У Вас є право на отримання цієї інформації та допомоги безкоштовно на Вашій рідній мові. Дозвоніть за номером телефону 800-722-1471 (TTY: 800-842-5357).

Tagalog (Tagalog):

Ang Paunawa na ito ay naglalarawan ng malahalagang impormasyon. Ang paunawa na ito ay maaring nagaling ng mahalagang impormasyon tungkol sa iyong aplikasyon o pagsakop sa pamamagitan ng Premera Blue Cross. Maaaring may mga mahalagang petsa dito sa paunawa. Maaring dapat na gumawa ng hakbang sa ilang mga itinakdang petsa bago i-unmang sa iyong aplikasyon o pagkakamit. Kapatid ang iyong aplikasyon na iibahagi sa iyong kabanata o tanging sa iyong pagsakop sa pamamagitan ng Premera Blue Cross na iibahagi sa iyong kabanata o tanging sa iyong pagsakop sa pamamagitan ng Premera Blue Cross. Maaaring may mga mahalagang petsa dito sa paunawa. Maaring dapat na gumawa ng hakbang sa ilang mga itinakdang petsa bago i-unmang sa iyong aplikasyon o pagkakamit. Kapatid ang iyong aplikasyon na iibahagi sa iyong kabanata o tanging sa iyong pagsakop sa pamamagitan ng Premera Blue Cross na iibahagi sa iyong kabanata o tanging sa iyong pagsakop sa pamamagitan ng Premera Blue Cross.