Cryosurgical Ablation of Miscellaneous Solid Tumors
Other Than Liver, Prostate, or Dermatologic Tumors

Number: 7.01.526
Effective Date: November 1, 2016
Revision Date(s): 10/11/16; 08/09/16; 09/08/15; 09/08/14; 09/09/13; 03/13/12;
08/09/11; 09/14/10; 03/10/09; 03/11/08; 04/10/07; 10/10/06;
10/11/05; 03/30/04
Replaces: 7.01.92

Policy

Cryosurgical ablation of benign breast fibroadenomas may be considered medically necessary when ALL of the following criteria are met:

- The lesion must be sonographically visible; and
- The diagnosis of fibroadenoma is confirmed histologically; and
- The lesion(s) is less than 3 cm in largest diameter; and
- There are none of the following contraindications in existence:
 - Large core biopsy diagnosis suggestive of cystosarcoma phyllodes tumor or other malignancy;
 - Poor visualization of lesion by ultrasound; or
 - Large core biopsy diagnosis of fibroadenoma where diagnosis is thought to be non-concordant with findings on imaging or physical examination.

Cryosurgical ablation may be considered medically necessary to treat localized renal cell carcinoma that is no more than 4 cm in size when either of the following criteria is met:

- Preservation of kidney function is necessary (i.e., the patient has one kidney or renal insufficiency defined by a glomerular filtration rate [GFR] of less than 60 mL/min per m2) and standard surgical approach (i.e., resection of renal tissue) is likely to substantially worsen kidney function; or
- Patient is not considered a surgical candidate.

Cryosurgical ablation is considered investigational as a treatment of malignant tumors of the breast, lung, pancreas, or other solid tumors or metastases outside the liver and prostate and to treat renal cell carcinomas in patients who are surgical candidates.

Related Policies

7.01.95 Radiofrequency Ablation of Miscellaneous Solid Tumors Excluding Liver Tumors
7.01.133 Microwave Tumor Ablation
8.01.24 Hematopoietic Stem-Cell Transplantation for Miscellaneous Solid Tumors in Adults
Policy Guidelines

Coding

<table>
<thead>
<tr>
<th>CPT</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0340T</td>
<td>Ablation, pulmonary tumor(s), including pleura or chest wall when involved by tumor extension, percutaneous, cryoablation, unilateral, includes imaging guidance</td>
</tr>
<tr>
<td>19105</td>
<td>Ablation, cryosurgical, of fibroadenoma, including ultrasound guidance, each fibroadenoma</td>
</tr>
<tr>
<td>20983</td>
<td>Ablation therapy for reduction or eradication of 1 or more bone tumors (e.g., metastasis) including adjacent soft tissue when involved by tumor extension, percutaneous, including imaging guidance when performed; cryoablation</td>
</tr>
<tr>
<td>50250</td>
<td>Ablation, open, one or more renal mass lesion(s), cryosurgical, including intraoperative ultrasound guidance and monitoring, if performed</td>
</tr>
<tr>
<td>50542</td>
<td>Laparoscopy, surgical; ablation of renal mass lesion(s), including intraoperative ultrasound guidance and monitoring, when performed</td>
</tr>
<tr>
<td>50593</td>
<td>Ablation, renal tumor(s), unilateral, percutaneous, cryotherapy</td>
</tr>
</tbody>
</table>

Description

Cryosurgical ablation (hereafter referred to as cryosurgery or cryoablation) involves freezing of target tissues, most often by inserting a probe into the tumor that is used to circulate coolant through. Cryosurgery may be performed as an open surgical technique or as a closed procedure under laparoscopic or ultrasound guidance.

Background

The hypothesized advantages of cryosurgery include improved local control and benefits common to any minimally invasive procedure (e.g., preserving normal organ tissue, decreasing morbidity, decreasing length of hospitalization). Potential complications of cryosurgery include those caused by hypothermic damage to normal tissue adjacent to the tumor, structural damage along the probe track, and secondary tumors, if cancerous cells are seeded during probe removal.

Cryosurgical treatment of various tumors including renal cell carcinomas, malignant and benign breast disease, pancreatic cancer, and lung cancer has been reported in the literature.

Breast Tumors

Early-stage primary breast tumors are treated surgically. The selection of lumpectomy, modified radical mastectomy, or another approach balances the patient’s desire for breast conservation, the need for tumor-free margins in resected tissue, and the patient’s age, hormone receptor status, and other factors. Adjuvant radiation therapy decreases local recurrences, particularly for those who select lumpectomy. Adjuvant hormonal therapy and/or chemotherapy are added, depending on presence and number of involved nodes, hormone receptor status, and other factors. Treatment of metastatic disease includes surgery to remove the primary lesion and combination chemotherapy.

Fibroadenomas are common, benign tumors of the breast that can either present as a palpable mass or a mammographic abnormality. These benign tumors have been frequently surgically excised to rule out a malignancy. More recently, cryosurgical ablation has been proposed as a nonsurgical alternative to surgical excision of benign breast fibroadenomas. The demand for nonsurgical options for the management of these lesions is growing because less invasive strategies such as cryoablation to obliterate a palpable abnormality have evolved.

Lung tumors

Early state lung tumors are typically treated surgically. Patients with early stage lung cancer who are not surgical
candidates may be candidates for radiation treatment with curative intent. Cryoablation is being investigated in patients who are medically inoperable, with small primary lung cancers or lung metastases. Patients with more advanced local disease or metastatic disease may undergo chemotherapy with radiation following resection. This is rarely curative but rather seeks to retard tumor growth or palliate symptoms.

Pancreatic Cancer
Pancreatic cancer is a relatively rare solid tumor that occurs almost exclusively in adults and is almost always fatal. Surgical resection of tumors contained entirely within the pancreas is currently the only potentially curative treatment. However the nature of the cancer is such that few tumors are found at such an early and potentially curable stage. Patients with more advanced local disease or metastatic disease may undergo chemotherapy with radiation following resection. This is rarely curative but rather seeks to retard tumor growth or palliate symptoms.

Renal Cell Carcinoma (RCC)
Localized RCC is treated by radical nephrectomy or nephron-sparing surgery. Prognosis drops precipitously if the tumor extends outside the kidney capsule, because chemotherapy is relatively ineffective against metastatic RCC.

Regulatory Status
There are several cryoablation devices cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process for use in open, minimally invasive or endoscopic surgical procedures in the areas of general surgery, urology, gynecology, oncology, neurology, dermatology, proctology, thoracic surgery and ear; nose; and throat. Examples include:

- Cryocare® Surgical System by Endocare
- CryoGen Cryosurgical System by Cryosurgical, Inc.
- CryoHit® by Galil Medical (for the treatment of breast fibroadenoma)
- SeedNet™ System by Galil Medical
- Visica® System by Sanarus Medical

FDA product code: GEH.

Scope
Medical policies are systematically developed guidelines that serve as a resource for Company staff when determining coverage for specific medical procedures, drugs or devices. Coverage for medical services is subject to the limits and conditions of the member benefit plan. Members and their providers should consult the member benefit booklet or contact a customer service representative to determine whether there are any benefit limitations applicable to this service or supply. This medical policy does not apply to Medicare Advantage.

Benefit Application
N/A

Rationale
This policy was originally created in 2004 and is updated as necessary with literature searches of the MEDLINE database. The most recent literature search was through June 2015. The following is a summary of the key literature to date. The literature search identified publications discussing applications of cryosurgery for primary
and metastatic tumors outside the liver and prostate. All were uncontrolled case series with varied criteria to select patients for cryosurgery and reported limited data on long-term outcomes.

The following sections summarize those studies that adequately described baseline characteristics of the patient populations and the methods used for cryosurgery, and also reported outcomes of treatment for 8 or more patients with the same diagnosis, or eight or more procedures on the same malignancy. One article discussed cryosurgery in 429 patients with a wide variety of primary and recurrent solid tumors (e.g., head and neck, lung, genital organs, sarcomas). (1) Although the author reported survival for some patient subsets with certain of these malignancies, the article only reported baseline tumor and patient characteristics for those with breast cancer.

Breast Cancer
In 2010, Zhao and Wu reported on a systematic review of minimally-invasive ablative techniques of early stage breast cancer. (2) The review noted that studies on cryoablation for breast cancer are primarily limited to pilot and feasibility studies in the research setting. Complete ablation of tumors was found to be reported within a wide range of 36-83%. Since there are many outstanding issues, including patient selection criteria and the ability to precisely determine the size of tumors and achieve 100% tumor cell death, the reviewers noted minimally-invasive thermal ablation techniques for breast cancer treatment, including cryoablation, should be limited until results from prospective, randomized clinical trials become available.

Niu and colleagues reported on a 2013 retrospective study of 120 patients with metastatic breast cancer, including 30 metastases to the contralateral breast and other metastases to the lung, bone, liver and skin who were treated with either chemotherapy (n=29) or cryoablation (n=91, 35 of whom also received immunotherapy). (3) After a 10-year follow-up, median overall survival of all study participants was 55 months in the cryoablation group versus 27 months in the chemotherapy group (p<0.0001). Median overall survival was also greater in patients receiving multiple cryoablations and in those receiving immunotherapy. Complications with cryotherapy to the breast were ecchymosis and hematoma, pain, tenderness and edema, all of which resolved within 1 week to 1 month.

Three studies described the outcome of cryosurgery for advanced primary or recurrent breast cancer in 72 patients. (1, 4, 5) Cryosurgery was performed percutaneously with ultrasound guidance (n=15) or during an open surgical procedure (n=57). Patients were treated for advanced primary disease (44%) or recurrent tumors (56%). Tanaka reported on a retrospective series of 9 patients with advanced primary tumors and 40 with recurrent disease. (1) The author reported 44% survival of primary breast cancer patients (n=9) at 3 and 5 years but did not report survival duration or other outcomes for those with recurrent or metastatic disease. The report also did not adequately describe selection criteria for those enrolled in the study, details of the procedure, and procedure-related adverse events. The other studies (4-6) were smaller series of patients and also were inadequate with respect to study design, analysis, and reporting of results. Furthermore, the study by Pfleiderer et al. (4) was a pilot trial to evaluate technical limitations of the procedure. Tumors were excised and evaluated by pathology days to weeks after cryosurgery, and the authors reported incomplete necrosis in tumors greater than 23 mm in diameter.

One case series by Sabel and colleagues explored the role of cryoablation as an alternative to surgical excision as a primary treatment of early stage breast cancer. (7) This Phase I study included 29 patients who underwent cryoablation of primary breast cancers measuring less than 2 cm in diameter, followed up 1 to 4 weeks later by standard surgical excision. Cryoablation was successful in patients with invasive ductal carcinoma less than 1.5 cm in diameter and with less than 25% ductal carcinoma in situ identified in a prior biopsy specimen. In a small series of 11 patients with breast cancer tumors less than 2 cm, Pusztaszeri et al. found residual tumor present in 6 cases when follow-up lumpectomy was performed approximately 4 weeks after cryoablation. (8) In a case series of 15 patients with breast cancer lesions that were 8 ± 4 mm in diameter, percutaneous cryoablation was performed 30-45 days prior to surgical resection. (9) Resection of the lesions confirmed complete necrosis occurred in 14 patients, but one lesion had residual disease considered to be probably due to incorrect probe placement.

Because available evidence did not include control groups or compare outcomes of cryosurgery to alternative strategies for managing similar patients, no conclusions can be made on the net health outcomes of cryosurgery for breast cancer. Therefore, cryosurgery for breast cancer is considered investigational.
Breast Fibroadenomas
A variety of case series have focused on the role of cryosurgery as an alternative to surgical excision of benign fibroadenomas. Kaufman and colleagues have published several case series reports on office-based ultrasound-guided cryoablation as a treatment of breast fibroadenomas.(10-14) These case series reported on a range of 29-68 patients followed for periods of 6 months to up to 2.6 years. It is likely that these case series include overlapping patients. At 1 year, patients reported 91% patient satisfaction and fibroadenomas became nonpalpable in 75% of cases. At follow-up averaging 2.6 years in 37 patients, the authors noted only 16% out of 84% of palpable fibroadenomas remained palpable after treatment and of the fibroadenomas that were initially 2 cm or less in size, only 6% remained palpable.(14) In this series of patients, the authors also noted that cryoablation did not produce artifact that might interfere with interpretation of mammograms. These small case series from the same group of investigators is inadequate to permit scientific conclusions. In addition, it is unclear whether "nonpalpability" is the most appropriate medical outcome. Fibroadenomas are benign lesions with only a very remote chance of malignant conversion, and thus complete surgical excision may be recommended primarily to allay patients' concerns regarding harboring a palpable lesion.

Nurko et al. reported on outcomes at 6 and 12 months for 444 treated fibroadenomas reported to the FibroAdenoma Cryoablation Treatment (FACT) registry involving 55 different practice settings.(15) In these patients, before cryoablation, 75% of fibroadenomas were palpable by the patient. Follow-up at 6- and 12-month intervals showed palpable masses in 46% and 35%, respectively. When fibroadenomas were grouped by size, for lesions 2 cm or less, the treatment area was palpable in 28% at 12 months. For lesions more than 2 cm, the treatment area was palpable in 59% at 12 months. The authors noted they would continue to follow up these patients to better define resolution of the treatment-induced physical and radiographic findings. Comparative trials with adequate long-term follow-up are needed to assess this technology and determine how this approach compares with surgery, as well as with vacuum-assisted excision and with observation (approximately one-third regress over several years’ time).

Lung Cancer
Lee and colleagues conducted a systematic review of endoscopic cryoablation of lung and bronchial tumors.(16) Included in the review were 15 case studies and one comparative, observational study. Cryoablation was performed for inoperable, advanced lung and bronchial cancers in most studies. Some studies included patients with co-morbid conditions and poor general health that would not be considered surgical candidates. Complications occurred in 11.1% of patients from 10 studies and consisted of hemorrhage, mediastinal emphysema, atrial fibrillation, and dyspnea. Within 30 days of the procedure, death from hemoptysis and respiratory failure, considered to be most likely related to disease progression, occurred in 7.1% of patients. Improvements in pulmonary function and clinical symptoms occurred in studies reporting these outcomes.

In 2012, Niu et al. reviewed the literature on lung cryoablation and reported on their own experience with percutaneous cryoablation in 150 patients with non-small cell lung cancer (NSCLC) followed for 12 to 38 months.(17) Included in the study population were stage IIIB+IV lung cancer patients. Overall survival rates at 1, 2, and 3 years were 64%, 45% and 32%, respectively. The 30-day mortality was 2.6% and included cardiac arrest and hemopneumothorax. Complications included hemoptysis, pneumothorax, hemothorax, pleural effusion and pulmonary infection.

An Agency for Healthcare Research and Quality (AHRQ) comparative effectiveness review on local nonsurgical therapies for stage 1 and symptomatic obstructive NSCLC was published in 2014.(18) Cryoablation was included in the review as a potential therapy for airway obstruction due to an endoluminal NSCLC. The reviewers were unable to draw any conclusions on local nonsurgical therapies, including cryoablation, due to lack of available quality evidence.

Available studies are limited to primarily small cohort and nonrandomized studies with relatively short-term follow-up. Complications are also reported frequently and can be severe. Because available studies do not include control groups or compare outcomes of cryosurgery to alternative strategies for managing similar patients, no conclusions can be made on the net health outcomes of cryosurgery for lung cancer.

Pancreatic Cancer
In 2012, Tao and colleagues reported on a systematic review of cryoablation for pancreatic cancer.(19) The
authors identified 29 studies from the literature search and included 5 of these studies in the review. The 5 studies were all case series and considered to be of low quality. Adverse events, when mentioned in the studies, included delayed gastric emptying (0% to 40.9% in 3 studies), pancreatic leak (0% to 6.8% in 4 studies), biliary leak (0% to 6.8% in 3 studies), and 1 instance of upper gastrointestinal hemorrhage. Pain relief was reported in 3 studies and ranged from 66.7% to 100%. Median survival times reported in 3 studies ranged from 13.4 to 16 months. One-year total survival rates reported in 2 studies were 57.5% and 63.6%. Keane et al reported on a systematic review of ablation therapy for locally advanced pancreatic cancer in 2014. (20) The review noted studies have demonstrated ablative therapies, including cryoablation, are feasible but larger studies are needed. No conclusions could be made on whether ablation resulted in better oncologic outcomes than best supportive care.

Kovach et al (21) reported 10 cryosurgical ablations in 9 patients with unresectable pancreatic cancer using intraoperative ultrasound guidance during laparotomy. The authors report no intraoperative morbidity or mortality and adequate pain control in all patients postoperatively. At the time of publication, all patients had died at an average of 5 months postoperatively (range: 1–11 months).

A pilot study on the combination of cryosurgery and (125) iodine seed implantation for treatment of locally advanced pancreatic cancer was reported by Xu et al. (22) Forty-nine patients were enrolled, 12 with liver metastases. Twenty patients received regional chemotherapy. At 3 months after therapy, most patients showed tumor necrosis, with 20.4% of patients having complete response. Overall, the 6-, 12-, 24-, and 36-month survival rates were 94.9%, 63.1%, 22.8%, and 9.5%, respectively.

Li and colleagues reported on a retrospective study of 142 patients with unresectable pancreatic cancer treated with palliative bypass with (n=68) or without cryoablation (n=74) from 1995 to 2002. (23) Median dominant tumor sizes decreased from 4.3 cm to 2.4 cm in 36 of 55 patients (65%) 3 months after cryoablation. Survival rates were not significantly different between groups, with the cryoablation group surviving a median of 350 days versus 257 days in the group that did not receive cryoablation. Complications overall were not significantly different between the 2 groups. However, a higher percentage of delayed gastric emptying occurred in the cryoablation group compared to the group that did not receive cryoablation (36.8% vs. 16.2%, respectively).

Because these studies did not include control groups or compare outcomes of cryosurgery to alternative strategies for managing similar patients, no conclusions can be made on the net health outcomes of cryosurgery for pancreatic cancer. Therefore, cryosurgery for pancreatic cancer is considered investigational.

Renal Cell Carcinoma

In 2014, Tang et al. reported on a systematic review and meta-analysis of laparoscopic renal cryoablation versus laparoscopic partial nephrectomy for the treatment of small renal masses. (24) The study identified nine eligible trials (2 prospective, 7 retrospective) in which the 2 techniques were assessed, and included 555 cases and 642 controls. Laparoscopic cryoablation was associated with statistically significant shorter operative time, less blood loss and fewer overall complications; however, it was estimated that laparoscopic partial nephrectomy may still have a significantly lower local recurrence rate (odds ratio, [OR], 13.03; 95% confidence interval [CI], 4.20 to 40.39; p<.001) and lower distant metastasis rate (OR=9.05; 95% CI, 2.31 to 35.51; p=.002).

In 2014, Klatte et al. reported on a systematic review and meta-analysis of laparoscopic cryoablation versus laparoscopic partial nephrectomy for small renal tumors. (25) Thirteen nonrandomized studies were included in the analysis, which found laparoscopic cryoablation was associated with better perioperative outcomes than laparoscopic partial nephrectomy. Oncologic outcomes, however, were inferior with cryoablation which was significantly associated with greater risk of local and metastatic tumor progression with relative risks of 9.39 and 4.68, respectively. Tang et al. also reported on a systematic review and meta-analysis of laparoscopic cryoablation versus laparoscopic partial nephrectomy for small renal tumors in 2014. (24) This review included 2 prospective and 7 retrospective studies. Similar results to the Klatte analysis were found including better perioperative outcomes and inferior oncologic outcomes occurring with laparoscopic cryoablation than laparoscopic partial nephrectomy. Local recurrence and distant metastasis rates were significantly lower with laparoscopic partial nephrectomy (odds ratio [OR], 13.03; 95% confidence interval [CI], 4.20 to 40.39; p<.001; and OR=9.05; 95% CI: 2.31 to 35.51; p=0.002, respectively).

In an earlier 2011 systematic review, Klatte et al. reviewed 98 studies published through December 2010 to compare treatment of small renal masses with laparoscopic cryoablation or partial nephrectomy. (26) Partial nephrectomy was performed in 5,347 patients and laparoscopic cryoablation was performed in 1,295 patients.
Renal cell carcinoma was proven in 159 (2.9%) of patients. After cryoablation, local tumor progression of the renal cell carcinoma occurred at a rate of 8.5% (70 of 821; range: 0–17.7%). After partial nephrectomy, 1.9% (89 of 4,689; range: 0–4.8%), experienced local tumor progression. Distant metastasis occurred more frequently in partial nephrectomy patients than cryoablation patients although not significantly (91 vs. 9 patients, respectively; p=0.126). However, mean tumor size for cryoablation patients was smaller than the partial nephrectomy patients (2.4 vs. 3.0 cm; p<0.001). Fewer patients receiving cryoablation experienced perioperative complications than partial nephrectomy patients (17% [range: 0–42%] vs. 23.5% [range: 8–66%]; p<0.001).

Long et al. reported on a 2011 systematic review comparing percutaneous cryoablation to surgical cryoablation of small renal masses.(27) A total of 42 studies treating small renal masses (pooled total of 1,447 lesions) were reviewed including 28 articles on surgical cryoablation and 14 articles on percutaneous cryoablation. The authors concluded percutaneous and surgical cryoablation for small renal masses have similar, acceptable short-term oncologic outcomes, and each technique is relatively equivalent. Long-term data are needed to ultimately compare ablation techniques to the gold standard of partial or radical nephrectomy.

In 2011, Van Poppel et al. conducted a review of the literature on localized renal cell carcinoma treatment published between 2004 and May 2011.(28) In this review, the authors concluded cryoablation is a reasonable treatment option for low-grade renal tumors less than 4 cm (mostly less than 3 cm) in patients who are not candidates for surgical resection or active surveillance. The authors noted the need for long-term prospective studies to compare ablative techniques for renal ablation, such as radiofrequency ablation (RFA) versus cryoablation.

Martin and Athreya reported on a meta-analysis of cryoablation versus microwave ablation for small renal tumors in 2013.(29) The analysis included 51 studies and did not reveal any significant differences between microwave ablation and cryoablation in primary effectiveness (93.75% vs 91.27%, respectively; p=0.4), cancer-specific survival (98.27% vs 96.8%, respectively; p=0.47), local tumor progression (4.07% vs 2.53%, respectively; p=0.46), or progression to metastases (0.8% vs 0%, respectively; p=0.12). In the microwave ablation group, the mean tumor size was significantly larger (p=0.03) and open access was used more often than in the cryoablation group (12.20% vs 1.04%, respectively; p<0.001). In the cryoablation group, percutaneous access was used more often than in the microwave ablation group (88.64% vs 37.20%, respectively; p=0.002).

In 2012, El Dib and colleagues conducted a meta-analysis evaluating cryoablation and RFA for small renal masses. (30) Included in the review were 20 cryoablation (totaling 457 patients) and 11 RFA (totaling 426 patients) case series studies published through January 2011. Mean tumor size was 2.5 cm (range from 2 to 4.2 cm) in the cryoablation group and 2.7 cm (range from 2 to 4.3 cm) in the RFA group. Mean follow-up times for the cryoablation group and RFA group were 17.9 and 18.1 months, respectively. Clinical efficacy, defined as cancer-specific survival rate, radiographic success, no evidence of local tumor progression, or distant metastases, was not significantly different between groups. The pooled proportion of clinical efficacy for cryoablation was 89% (95% confidence interval [CI]: 0.83–0.94) and 90% (95% CI: 0.86–0.93) for RFA.

In a 2010 Cochrane review, Nabi et al. reviewed evidence on the management of localized RCC.(31) No randomized trials comparing cryoablation to open radical or partial nephrectomy were identified. One nonrandomized study compared laparoscopic partial nephrectomy with laparoscopic cryoablation using a matched paired-analysis(32) and 3 retrospective studies. The review notes percutaneous cryoablation can successfully destroy small RCC and may be considered a treatment option in patients with serious comorbidities that pose surgical risks. The review concluded that high-quality, RCTs are required in the management of localized RCC and that 1 area of emphasis should be the role of renal surgery compared with minimally invasive techniques for small tumors (<4 cm).

Kunkle and Uzzo(33) conducted a comparative meta-analysis evaluating cryoablation and RFA as primary treatment for small renal masses in 2008. Forty-seven case series representing 1,375 renal tumors were analyzed. Of 600 lesions treated with cryoablation, 494 were biopsied before treatment versus 482 of 775 treated with RFA. The incidence of RCC with known pathology was 72% in the cryoablation group and 90% in the RFA group. The mean duration of follow-up after cryoablation was 22.5 months. Most studies used contrast enhanced imaging to determine treatment effect. Local tumor progression was reported in 31 of 600 (5%) lesions after cryoablation and in 100 of 775 (13%) lesions after RFA. Progression to metastatic disease was described in 6 of 600 (1%) lesions after cryoablation versus 19 of 775 (2.5%) after RFA. The authors caution that minimally invasive ablation generally has been performed selectively on older patients with smaller tumors, possibly resulting in selection bias; series of ablated lesions tend to have shorter post-treatment follow-up compared with tumors managed by surgical excision or active surveillance, and treatment efficacy may be overestimated in
series that include tumors with unknown pathology.

A number of studies reported intermediate-term outcomes for cryoablation with RCC. Weld and colleagues reported on 3-year follow-up of 36 renal tumors (22 were malignant) treated with laparoscopic cryoablation. In this series, the 3-year cancer-specific survival rate was 100%, and no patient developed metastatic disease. The authors concluded that these intermediate-term data seemed equivalent to results obtained with extirpative therapy. Hegarty and co-workers reported results on 164 laparoscopic cryoablations and 82 percutaneous RFAs for localized renal tumors. Mean tumor size was 2.5 cm. Cancer-specific survival following cryotherapy was 98% at a median follow-up of 3 years and 100% for RFA at just 1-year median follow-up. The authors noted that cryoablation and RFA are developmental nephron-sparing options and that early results are encouraging in terms of early oncologic control, preservation of renal function, and low complication rates. Studies are also reporting results with small numbers of patients comparing laparoscopic cryoablation with laparoscopic partial nephrectomy for treatment of renal masses.

Matin and Ahrar reviewed studies of cryoablation and RFA with at least 12-month follow-up and found that recently published 3- and 5-year outcomes show 93–98% cancer-specific survival in small cohorts. They caution that, while studies suggest satisfactory outcomes, given the limitations of imaging and the indolent nature of the tumors, stringent selection criteria and rigorous follow-up is required.

Strom and colleagues reported on a retrospective comparison of 145 patients who underwent laparoscopic (n=84) or percutaneous (n=61) cryoablation of small renal masses at 5 academic medical centers in the United States. These patients were offered cryoablation because they were considered to be at higher risk for complications from partial nephrectomy or were not surgical candidates due to comorbidities. Mean tumor size was 2.7 cm in the laparoscopic group versus 2.5 cm in the percutaneous group. Patients were followed for a longer period of time in the laparoscopic group (mean of 42.3 + 21.2 months) compared to the percutaneous group (31.0 + 15.9 months [p=0.008]). Complications in both treatment groups were similar and did not occur with any significant difference in frequency. At a mean intermediate follow-up of 37.6 months, local tumor recurrence was significantly more frequent in the percutaneous group at 16.4% (10/61) compared to 5.9% (5/84) in the laparoscopic group. However, disease-free survival and overall survival were not significantly different at last follow-up in the laparoscopic group compared to the percutaneous group (91.7% and 89.3% vs. 93.7% and 88.9%, respectively).

In a prospective, single-institution study, Rodriguez et al. reported on 113 patients consecutively treated with percutaneous cryoablation for 117 renal lesions. The average size of renal lesions in the study was 2.7 + 2.4 cm (83 or 71% were RCC). Patients were selected for cryoablation over surgery when tumors were equal to or less than 4 cm and percutaneously approachable or if the patient could not tolerate surgery when tumors were greater than 4–7 cm. Technical success was reported to be 100%, with 93% of patients having no complications or only mild complications. At a median follow-up of 2 years with 59 patients, efficacy was 98.3% and 92.3% at 3 years with 13 patients. Metastatic disease did not occur in any of the patients during the follow-up period, and cancer-specific survival was 100%.

Nguyen et al. evaluated options for salvage of ipsilateral tumor recurrence after previous ablation. Recurrence rates at their center were 13 of 175 (7%) after cryoablation and 26 of 104 (25%) after RFA. Extensive perinephric scarring was encountered in all salvage operations following cryoablation, and the authors conclude that cryoablation in particular can lead to extensive perinephric fibrosis, which can complicate attempts at salvage.

The available evidence supports a role for cryoablation for patients with small renal tumors less than 4 cm in size. Since longer-term cancer-specific outcomes are unknown, cryoablation of renal tumors should be limited to patients considered to be poor candidates for the standard surgical approach.

Other Cancers
Meller et al. report a retrospective analysis of a single center experience of 440 bone tumor cryosurgery procedures performed between 1988 and 2002, two-thirds of them for primary benign-aggressive and low-grade malignant lesions, and one-third for primary high-grade and metastatic bone tumors. At median follow-up of 7 years (range 3–18 years), overall recurrence rate was 8%. Based on their experience, the authors suggest that the ideal case for cryosurgery is a young adult with involvement of long bone, a benign-aggressive or low-grade malignant bone tumor, a good cavity with greater than 75% thick surrounding walls, none or minimal soft tissue component, and at least +/-1 cm of subchondral bone left near a joint surface after curettage and burr drilling.
In 2013, Callstrom et al. reported on 61 patients treated with cryoablation for pain from 69 tumors (size 1-11 cm) metastatic to the bone. Before treatment, patients rated their pain with a 4 or more on a 1-10 scale using the Brief Pain Inventory with a mean score of 7.1/10 for worst pain in a 24-hour period. The mean pain score gradually decreased after cryoablation to 1.4/10 (p<0.0001) 24 weeks for worst pain in a 24-hour period. A major complication of osteomyelitis was experienced by 1 patient (2%).

Other articles identified in the literature search related to use of cryoablation in other cancers either involved small numbers of patients or limited follow-up.

Ongoing and Unpublished Clinical Trials

A search of online site ClinicalTrials.gov found the following:

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT00723294</td>
<td>Cryoablation Therapy in Treating Patients With Invasive Ductal Breast Cancer</td>
<td>99</td>
<td>Sep 2013</td>
</tr>
<tr>
<td>NCT00890617</td>
<td>Cryotherapy in Treating Patients With Primary Stage I Non-Small Cell Lung Cancer or Lung Metastasis</td>
<td>10</td>
<td>Apr 2013</td>
</tr>
<tr>
<td>NCT00910312</td>
<td>ICE-SENSE™ Cryotherapy for Breast Fibroadenoma Trial (ICE-CRYSTAL)</td>
<td>54</td>
<td>Jan 2013</td>
</tr>
<tr>
<td>NCT01117779</td>
<td>Tracking Renal Tumors After Cryoablation Evaluation (TRACE)</td>
<td>250</td>
<td>Jan 2017</td>
</tr>
<tr>
<td>NCT01307501</td>
<td>Safety and Efficacy of Cryoablation for Metastatic Lung Tumors (ECLIPSE)</td>
<td>40</td>
<td>May 2014</td>
</tr>
<tr>
<td>NCT01429649</td>
<td>A Prospective Study of Ablation of Pulmonary Focal Pure Ground Glass Opacity</td>
<td>100</td>
<td>Dec 2014</td>
</tr>
</tbody>
</table>

NCT: National clinical trial

Summary

Cryosurgical ablation involves freezing of target tissues, most often by inserting into the tumor a probe through which coolant is circulated. Cryosurgery may be performed as an open surgical technique or as a closed procedure under laparoscopic or ultrasound guidance.

The literature on the use of cryosurgical ablation of tumors addressed in this policy consists primarily of reports of single-center case series; however, evidence is accumulating that cryoablation provides short-term tumor control and perhaps survival benefit for carefully selected patients with small renal cell carcinomas. Based on the scientific data (large numbers of patients treated with follow-up) , cryoablation of small (4 cm or less) renal cancers may be considered medically necessary in those patients who are not surgical candidates due to comorbid conditions or who have baseline renal insufficiency such that standard surgical procedures would impair their kidney function.

The current evidence on cryoablation for all other indications consists largely of noncomparative, case series and is insufficient to permit conclusions concerning the effect of cryoablation on health outcomes. Therefore, cryoablation is considered investigational for all other indications stated in the policy. Comparative studies with larger numbers of subjects and longer follow-up are needed.

Practice Guidelines and Position Statements

The American Society of Breast Surgeons

The American Society of Breast Surgeons 2008 Consensus Statement on Management of Fibroadenomas of the Breast indicates cryoablation is appropriate for histologically confirmed fibroadenoma lesions that are less than 4 cm in largest diameter and sonographically visible.(42) Cryoablation of fibroadenoma of the breast is contraindicated when ultrasound visualization is poor or core biopsy suggests a diagnosis of cystosarcoma phyllodes tumor or other malignancy or if physical examination or imaging is discordant with a biopsy diagnosis of fibroadenoma.
American College of Radiology (ACR)
The 2009 ACR Appropriateness Criteria for renal cell carcinoma indicates: “Energy ablative therapies, such as cryoablation…, are increasingly used in treating small renal cell carcinomas as an alternative to partial nephrectomy. These therapies have been shown to be effective and safe.” These recommendations are based on review of the data and consensus.(38,43)

American Urological Association (AUA)
The 2009 guidelines from the AUA on stage 1 renal masses indicate percutaneous or laparoscopic cryoablation “is an available treatment option for the patient at high surgical risk who wants active treatment and accepts the need for long-term radiographic surveillance after treatment.(44) The guidelines also indicate cryoablation “should be discussed as a less-invasive treatment option” in healthy patients with a renal mass equal to or less than 4.0 cm and clinical stage T1a. Patients should be informed that “local tumor recurrence is more likely than with surgical excision, measures of success are not well defined, and surgical salvage may be difficult.” These recommendations are based on review of the data and “appreciable” majority consensus.

National Comprehensive Cancer Network (NCCN)
The NCCN practice guidelines for kidney cancer (45) state that based on lower level evidence and uniform NCCN consensus, cryosurgery “can be considered for patients with clinical stage T1 renal lesions who are not surgical candidates. Biopsy of small lesions may be considered to obtain or confirm a diagnosis of malignancy and guide surveillance, cryosurgery … [and] ablation strategies.” The NCCN guidelines also note “rigorous comparison with surgical resection (i.e., total or partial nephrectomy by open or laparoscopic techniques) has not been done and [t]hermal ablative techniques are associated with a higher local recurrence rate than conventional surgery.”

The NCCN practice guidelines for non-small cell lung cancer (46) indicate surgical resection is the preferred local treatment but cryotherapy and other approaches are listed as treatment options.

U.S. Preventive Services Task Force Recommendations
Cryoablation/cryosurgery is not a preventive service.

Medicare National Coverage
No national coverage determination (NCD) was identified. In the absence of an NCD, coverage decisions are left to the discretion of local Medicare carriers.

References

33. Kunkle DA, Uzzo RG. Cryoablation or radiofrequency ablation of the small renal mass: a meta-analysis. Cancer 2008; 113(10):2671-2680. PMID 18816624

Appendix

N/A

History

<table>
<thead>
<tr>
<th>Date</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>03/30/04</td>
<td>Add to Surgery Section - New Policy</td>
</tr>
<tr>
<td>10/11/05</td>
<td>Replace Policy BC.7.01.92 - Policy statement revised to indicate that benign breast fibroadenomas may be considered medically necessary if certain criteria are met. References added regarding cryoablation of breast cancer, benign fibroadenomas and renal tumors.</td>
</tr>
<tr>
<td>02/06/06</td>
<td>Codes updated - No other changes.</td>
</tr>
<tr>
<td>06/09/09</td>
<td>Disclaimer and Scope update - No other changes.</td>
</tr>
<tr>
<td>10/10/06</td>
<td>Replace Policy - Policy updated with literature search; reference added. No change to policy statement</td>
</tr>
<tr>
<td>04/10/07</td>
<td>Replace Policy - Policy updated with literature review; no change in policy statement. Policy reviewed and recommended by OAP on February 22, 2007. Codes updated.</td>
</tr>
<tr>
<td>03/11/08</td>
<td>Replace Policy - Policy updated with literature search; no change to policy statement. References added.</td>
</tr>
</tbody>
</table>
10/14/08 Cross Reference Update - No other changes.
03/10/09 Replace Policy - Policy updated with literature review; no change in policy statement. References added. OAP reviewed on February 19, 2009 and recommended that BCBSA statement of medical necessity for renal cell carcinoma not be adopted.
08/11/09 Cross Reference Update - No other changes.
03/09/10 Cross Reference Update - No other changes.
09/14/10 Replace Policy - Policy updated with literature review. Policy statement changed: Renal cell carcinoma, previously considered investigational, may now be considered medically necessary when criteria are met.
08/09/11 Replace Policy – Policy updated with literature search; no change in policy statement. References added.
02/27/12 Related Policies updated; 7.01.133 added.
03/23/12 Replace Policy – Policy updated with literature search; no change in policy statement. References added. Reviewed and recommended by OAP on February 16, 2012.
09/27/12 Update Related Policy – 8.01.516 as it was archived.
12/20/12 Update Related Policies; policy number 7.01.540 was replaced with 7.01.95.
09/27/13 Replace policy. Description section, policy guidelines, and rationale section updated. No change to policy statement. References added.
12/03/13 Coding Update. Add ICD-10 codes.
01/12/15 Coding update. New CPT codes 20983 and 47383, effective 1/1/15, added to the policy.
09/08/15 Annual Review. Minor edits for readability. Policy updated with literature review through June 7, 2015; reference 24 added. Removed CPT codes 47383 and 0304T (replaced with 0340T, the correct code) as not related to this policy. CPT code 50542 in the policy guidelines added to coding table at end of policy. Policy statements unchanged.
08/09/16 Update Related Policies. Remove 8.01.27 as it was archived. Removed coding table at end of policy.
10/11/16 Annual Review. No changes made to the Policy Statement.

Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. The Company adopts policies after careful review of published peer-reviewed scientific literature, national guidelines and local standards of practice. Since medical technology is constantly changing, the Company reserves the right to review and update policies as appropriate. Member contracts differ in their benefits. Always consult the member benefit booklet or contact a member service representative to determine coverage for a specific medical service or supply. CPT codes, descriptions and materials are copyrighted by the American Medical Association (AMA).
©2016 Premera All Rights Reserved.
Discrimination is Against the Law

Premera Blue Cross complies with applicable Federal civil rights laws and does not discriminate on the basis of race, color, national origin, age, disability, or sex. Premera does not exclude people or treat them differently because of race, color, national origin, age, disability or sex.

Premera:
- Provides free aids and services to people with disabilities to communicate effectively with us, such as:
 - Qualified sign language interpreters
 - Written information in other formats (large print, audio, accessible electronic formats, other formats)
- Provides free language services to people whose primary language is not English, such as:
 - Qualified interpreters
 - Information written in other languages

If you need these services, contact the Civil Rights Coordinator.

If you believe that Premera has failed to provide these services or discriminated in another way on the basis of race, color, national origin, age, disability, or sex, you can file a grievance with:
Civil Rights Coordinator - Complaints and Appeals
PO Box 91102, Seattle, WA 98111
Toll free 855-332-4535, Fax 425-918-5592. TTY 800-842-5357
Email AppealsDepartmentInquiries@Premera.com

You can file a grievance in person or by mail, fax, or email. If you need help filing a grievance, the Civil Rights Coordinator is available to help you.

You can also file a civil rights complaint with the U.S. Department of Health and Human Services, Office for Civil Rights, electronically through the Office for Civil Rights Complaint Portal, available at https://ocrportal.hhs.gov/ocr/portal/lobby.jsf, or by mail or phone at:
U.S. Department of Health and Human Services
200 Independence Avenue SW, Room 509F, HHH Building
Washington, D.C. 20201, 1-800-368-1019, 800-537-7697 (TDD)
Complaint forms are available at

Getting Help in Other Languages

This Notice has Important Information. This notice may have important information about your application or coverage through Premera Blue Cross. There may be key dates in this notice. You may need to take action by certain deadlines to keep your health coverage or help with costs. You have the right to get this information and help in your language at no cost.
Call 800-722-1471 (TTY: 800-842-5357).

Arabic (Arabic):
يحتوي هذا الإشعار معلومات هامة. قد يحتوي هذا الإشعار معلومات مفيدة مثل تلك الوارد في Premera Blue Cross 3671 المجلة، أو قد تكون هناك أية معلومات أخرى متعلقة بهذا الإشعار.
بعض المعلومات المانحة متوفرة باللغات الأخرى على طرفي الجهاز. تتوفر معلومات الإشارة الأخرى في انتظارك.

Chinese (Chinese):
本通知有重要的讯息。本通知可能有关於您透过 Premera Blue Cross 提交的申请或保险的重要讯息。本通知可能有关重要日期。您可能需要在截止日期之前採取行动，以保留您的健康保险或者费用补貼。您有权利免费用您的母语得到本讯息和幫助。請接電話 800-722-1471 (TTY: 800-842-5357).

Oromoo (Cushite):
Oromoo (Cushite):

Italiano (Italian):
Premera Blue Cross.

Not every Important Date contained in this notification may affect your coverage. Possible Dates that may be mentioned are key dates to keep in mind for keeping your coverage or paying your fees. We encourage you to review this notification in its entirety.

If you require assistance, please call us at 800-722-1471 (TTY: 800-842-5357).

Regardless of your selected language, you are entitled to obtain this information and assistance at no cost. You have the right to receive this information and assistance in your native language. Please call us at 800-722-1471 (TTY: 800-842-5357).