Radiofrequency Ablation of the Renal Sympathetic Nerves as a Treatment for Resistant Hypertension

Number: 7.01.136
Effective Date: November 1, 2016
Revision Date(s): 10/11/16; 11/10/15; 11/10/14; 11/11/13
Replaces: N/A

Policy

Radiofrequency ablation of the renal sympathetic nerves is considered **investigational** for the treatment of resistant hypertension.

Related Policies

None

Policy Guidelines

Coding

<table>
<thead>
<tr>
<th>CPT</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0338T</td>
<td>Transcatheter renal sympathetic denervation, percutaneous approach including arterial puncture, selective catheter placement(s) renal artery(ies), fluoroscopy, contrast injection(s), intraprocedural roadmapping and radiological supervision and interpretation, including pressure gradient measurements, flush aortogram and diagnostic renal angiography when performed; unilateral</td>
</tr>
<tr>
<td>0339T</td>
<td>Transcatheter renal sympathetic denervation, percutaneous approach including arterial puncture, selective catheter placement(s) renal artery(ies), fluoroscopy, contrast injection(s), intraprocedural roadmapping and radiological supervision and interpretation, including pressure gradient measurements, flush aortogram and diagnostic renal angiography when performed; bilateral</td>
</tr>
</tbody>
</table>

Description

Radiofrequency ablation (RFA) of the renal sympathetic nerves is thought to decrease both the afferent sympathetic signals from the kidney to the brain and the efferent signals from the brain to the kidney. This decreases sympathetic activation, decreases vasoconstriction, and decreases activation of the renin-angiotensin
system. RFA of the renal sympathetic nerves may act as a nonpharmacologic treatment for hypertension and has been proposed as a treatment option for patients with resistant hypertension.

For individuals who have hypertension resistant to standard medical management who receive RFA of the renal sympathetic nerves, the evidence includes at least 10 randomized controlled trials (RCTs), along with multiple nonrandomized comparative studies and case series. Relevant outcomes are symptoms, change in disease status, morbidity events, medication use, and treatment-related morbidity. The largest trial, the Symplicity HTN-3 trial, which used a sham-controlled design to reduce the likelihood of placebo effect, demonstrated no significant differences between renal denervation and sham-control patients in office-based or ambulatory blood pressure at 6-month follow-up. Results from Symplicity HTN-3 are supported by a subsequent sham-controlled trial. The Symplicity HTN-3 results were in contrast to additional studies, including Symplicity HTN-2 and DENERHTN, which reported efficacy in reducing blood pressure over a 6-month time period compared with a control group. Additional smaller RCTs, some of which were stopped early after results of the Symplicity HTN-3 trial became available, did not demonstrate significantly improved outcomes with renal denervation. Single-arm studies with overlapping populations have reported improvements in blood pressure and related physiologic parameters, such as echocardiographic measures of left ventricular hypertrophy, that appear to be durable up to 24 months of follow-up. The body of evidence for the use of renal denervation to treat hypertension consists of RCTs that have conflicting results. The strongest evidence comes from sham-controlled trials, the largest of which found no significant benefits with renal denervation. The evidence is insufficient to determine the effects of the technology on health outcomes.

Background

Resistant Hypertension

Hypertension is a widely prevalent condition, which is estimated to affect approximately 30% of the population in the United States.(1) It accounts for a high burden of morbidity related to strokes, ischemic heart disease, kidney disease, and peripheral arterial disease. Resistant hypertension is defined as elevated blood pressure, despite treatment with at least 3 antihypertensive agents at optimal doses. Resistant hypertension is also a relatively common condition, given the large number of individuals with hypertension. In large clinical trials of hypertension treatment, up to 20% to 30% of participants meet the definition for resistant hypertension, and in tertiary care hypertension clinics, the prevalence has been estimated to be 11% to 18%. (1) Resistant hypertension is associated with a higher risk for adverse outcomes such as stroke, myocardial infarction, heart failure, and kidney failure.

There are a number of factors that may contribute to uncontrolled hypertension, and these should be considered and addressed in all patients with hypertension before labeling a patient resistant. These include non-adherence to medications, excessive salt intake, inadequate doses of medications, excess alcohol intake, volume overload, drug-induced hypertension, and other forms of secondary hypertension.(2) Also, sometimes it is necessary to address comorbid conditions, i.e., obstructive sleep apnea, to adequately control blood pressure.

Treatment for resistant hypertension is mainly intensified drug therapy, sometimes with the use of non-traditional antihypertensive medications such as spironolactone and/or minoxidil. However, control of resistant hypertension with additional medications is often challenging and can lead to high costs and frequent adverse effects of treatment. As a result, there is a large unmet need for additional treatments that can control resistant hypertension. Non-pharmacologic interventions for resistant hypertension include modulation of the baroreflex receptor and/or radiofrequency (RF) denervation of the renal nerves.

RF Denervation of the Renal Sympathetic Nerves

Increased sympathetic nervous system activity has been linked to essential hypertension. Surgical sympathectomy has been shown to be effective in reducing blood pressure but is limited by the adverse effects of surgery and was largely abandoned after effective medications for hypertension became available. The renal sympathetic nerves arise from the thoracic nerve roots and innervate the renal artery, the renal pelvis, and the renal parenchyma. Radiofrequency ablation (RFA) is thought to decrease both the afferent sympathetic signals from the kidney to the brain and the efferent signals from the brain to the kidney. This decreases sympathetic activation, decreases vasoconstriction, and decreases activation of the renin-angiotensin system.(3)

The procedure is performed percutaneously with access at the femoral artery. A flexible catheter is threaded into
the renal artery and controlled energy source, most commonly low-power RF energy is delivered to the arterial walls where the renal sympathetic nerves are located. Once adequate RF energy has been delivered to ablate the sympathetic nerves, the catheter is removed.

Regulatory Status

No RFA devices have been approved for ablation of the renal sympathetic nerves as a treatment for hypertension. Several devices have been developed for this purpose and are in various stages of application for U.S. Food and Drug Administration (FDA) approval. FDA product code: DQY.

- The Symplicity™ renal denervation device (Medtronic, Minneapolis, MN) consists of a flexible catheter that is specifically intended for use in the renal arteries, and an external power generator.
- The EnligHTN™ multi-electrode renal denervation system (St. Jude Medical, Plymouth, MN) is an RFA catheter using a 4-point multiablation basket design. In January 2014, the EnligHTN™ Renal Guiding Catheter was cleared for marketing by FDA through the 510(k) process based on substantial equivalence to predicate devices (product code: DQY) for the following indication: percutaneous use through an introducer sheath to facilitate a pathway to introduce interventional and diagnostic devices into the renal arterial vasculature.
- The One-Shot Renal Denervation System™ (Covidien, Dublin) is an irrigated RFA balloon catheter, consisting of a spiral shaped electrode surrounding a balloon that is intended to ablate using 1 application. On January 21, 2014, Covidien announced it will exit its OneShot Renal Denervation program.
- The Vessix™ Renal Denervation System (Boston Scientific, Marlborough, MA; formerly The V2 renal denervation system, Vessix Vascular) is a combination of a RF balloon catheter and bipolar RF generator technologies, intended to permit a lower voltage intervention.
- The Thermocouple Catheter™ (Biosense Webster, Diamond Bar, CA) is an RFA catheter that is in clinical use for cardiac electrophysiology procedures, and also has been used for RFA of the renal arteries.

Other RFA catheters (e.g., Thermocouple Catheter™ [Biosense Webster, Diamond Bar, CA]) used for other types of ablation procedures (e.g., cardiac electrophysiology procedures) have been used off-label for RFA of the renal arteries.

Scope

Medical policies are systematically developed guidelines that serve as a resource for Company staff when determining coverage for specific medical procedures, drugs or devices. Coverage for medical services is subject to the limits and conditions of the member benefit plan. Members and their providers should consult the member benefit booklet or contact a customer service representative to determine whether there are any benefit limitations applicable to this service or supply. This medical policy does not apply to Medicare Advantage.

Benefit Application

N/A

Rationale

Populations
- Individuals: With hypertension resistant to standard medical management

Interventions
- Interventions of interest are: Radiofrequency ablation of the renal sympathetic

Comparators
- Comparators of interest are: Continued medical therapy

Outcomes
- Relevant outcomes include: Symptoms, Change in disease status
A determination of the efficacy of this technology requires high-quality randomized controlled trials (RCTs). This is due to the natural variability in blood pressure, the heterogeneity of the patient populations with increased blood pressure, and the presence of many potential confounders of outcome. A sham-controlled RCT is ideal, because it would also control for any placebo effects, or other non-specific effects of treatment of hypertension. Case series have limited utility for determining efficacy. They can be useful for demonstrating potential of the technique, for determining the rate of short- and long-term adverse effects of treatment, and to evaluate the durability of the treatment response.

The literature review identified several RCTs, the largest of which compared renal denervation with sham control for patients with treatment-resistant hypertension. Several other smaller RCTs have also been conducted, including one that compared renal denervation with standard care for patients with resistant hypertension, a second that compared renal denervation with stepped-care antihypertensive treatment, and a third that compared renal denervation plus cardiac ablation versus cardiac ablation alone for patients with resistant hypertension and atrial fibrillation. There were also a number of non-randomized controlled trials and case series, which are not the focus of this review.

Randomized Controlled Trials

DENERTHTN Trial

In 2015, Azizi et al. published results of the Renal Denervation for Hypertension (DENERTHTN) trial, a prospective, open-label RCT with blinded endpoint evaluation.(4) The study randomized 106 adults with confirmed resistant hypertension who had undergone four weeks of standardized triple antihypertensive therapy with sustained-release indapamide, ramipril (or irbesartan in cases of cough), and amlodipine to either renal denervation or control. Both groups received standardized stepped-care antihypertensive treatment (SSAHT), which involved the sequential addition of spironolactone, bisoprolol, sustained-release prazosin for systolic and diastolic pressures of 135 mm Hg or higher or 85 mm Hg or higher, respectively. Spironolactone could be started for home systolic and diastolic pressures of 170 mm Hg or higher or 105 mmHg or higher, respectively. Analysis was conducted using a modified intention-to-treat design, after excluding 5 patients in the intervention group who were missing primary endpoint measurements. For the study’s primary efficacy end point, the mean decrease in daytime ambulatory systolic blood pressure (SBP) was greater in the renal denervation group than in the control group (mean baseline-adjusted difference between groups, -5.9 mm Hg; 95% confidence interval [CI] -11.3 to -0.5 mm Hg; p=0.033). There were similarly greater decreases in nighttime and 24-hour SBP in the renal denervation group than in the control group. Nighttime blood pressure control was achieved at 6 months in 31.3% of renal denervation patients (vs. 11.3% of controls; p=0.012) and 24-hour ambulatory blood pressure control was achieved in 39.6% of renal denervation patients (vs. 18.9% of controls; p=0.013). Rates of daytime blood pressure control did not differ significantly between groups. The number of antihypertensive treatments at 6 months did not differ significantly between groups (mean, 5.25 for renal denervation patients vs. 5.43 for control patients; p=0.701). Three renal denervation-related adverse events were reported (lumbar pain in 2 patients, mild groin hematoma in 1 patient).

Prague-15 Study

Rosa et al. reported results of the Prague-15 study, an open-label RCT comparing renal sympathetic denervation with intensified pharmacologic treatment in patients with resistant hypertension.(5) Although study enrollment was planned for 120 subjects to have a 90% power in detecting a difference in treatment response between the 2 groups with an alpha of 0.05, the study was prematurely halted after the results of the Symplicity HTN-3 trial were published after enrollment of 112 subjects (56 in each group). Patients in the renal denervation group were maintained on baseline medical therapy; those in the control group received baseline medical therapy plus spironolactone. After 6 months, both groups demonstrated significant reductions in 24 hour average SBP (-8.6 mm Hg, p<0.001 [vs. baseline] for renal denervation patients; -8.1 mm Hg, p=0.001 [vs. baseline] for control patients). After 6 months, there were no significant differences in the absolute value of or the change in any of the
blood pressure parameters reported between the renal denervation and control group.

SYMPLICITY HTN-3

Results of the Symplicity HTN-3 trial, a multicenter, single-blinded, randomized, sham-controlled trial of renal denervation were published in 2014. (6) Included patients had severe, resistant hypertension, with a SBP of 160 mm Hg or higher, on maximally tolerated doses of at least 3 antihypertensive medications of complementary classes, 1 of which had to be a diuretic at an appropriate dose. Five-hundred thirty-five patients were randomized to renal denervation with the Medtronic Symplicity renal denervation catheter or to renal angiography only (sham control).

Changes in antihypertensive medication were not allowed during the 6-month follow-up period unless they were considered to be clinically necessary. The primary efficacy end point was the mean change in office SBP from baseline to 6 months in the denervation group, compared with the mean change in the sham control group. The secondary efficacy end point was the change in mean 24-hour ambulatory systolic blood pressure at 6 months. The primary safety end point was a composite of major adverse events, defined as death from any cause, end stage renal disease, an embolic event resulting in end-organ damage, renal-artery or other vascular complications, or hypertensive crisis within 30 days or new renal-artery stenosis of more than 70% within 6 months.

At the 6-month follow-up point, there was no significant between-group difference in the change in office blood pressure. There was a change in SBP of -14.1±23.93 mm Hg in the denervation group versus -11.7±25.94 mm Hg in the sham control group, for a difference of -2.39 mm Hg (95% CI: -6.89 to 2.12; p=0.26 with a superiority margin of 5 mm Hg). At 6-month follow-up, the change in ambulatory blood pressure was -6.75±15.11 mm Hg in the denervation group versus -4.79±17.25 mm Hg in the sham control group, for a difference of -1.96 mm Hg (95% CI: -4.97 to 1.06; p=0.98 with a superiority margin of 2 mm Hg). Major adverse event rates were similar between the denervation and control groups, 1.4% and 0.6%, respectively.

Strengths of this study include its large size and blinded, sham-controlled design, which reduce the likelihood of a placebo effect. A limitation of the initial publication is that the follow-up period reported is relatively short, leading to an underdetection of a treatment benefit that may manifest over time. The study subjects, including those who do not cross over to renal denervation, will be followed for 5 years to assess longer term outcomes.

Bakris et al. reported more detailed ambulatory blood pressure results from the Symplicity HTN-3 trial. (7) The change in average 24-hour ambulatory SBP and diastolic blood pressure (DBP) were as reported by Bhatt et al. There were no significant differences in change in ambulatory blood pressure between the renal denervation and control groups for any of the prespecified subgroup analyses, including the presence of coexisting diabetes mellitus; sex; race; body mass index of 30 kg/m2 or more; estimated glomerular filtration rate of 60 mL/min/1.73 m2 or more; age of 60 years or older; or any medication change during the study.

Bakris et al. also reported 12-month follow-up from the Symplicity HTN-3 trial, including the original denervation group, the sham subjects who crossed over to renal denervation, and the sham subjects who did not cross over. (8) The 12-month follow-up was available for 319 of 361 denervation subjects and 48 of 101 non–crossover subjects and 6-month denervation follow-up was available for 93 of 101 crossover subjects. At 12-month follow-up, the changes in office SBP compared with baseline were significantly greater than at 6-month follow up in the renal denervation group (-18.9 mm Hg vs. -15.5 mm Hg, p=0.025). However, there were no significant differences in ambulatory blood pressure monitoring between the 12 and 6 months results in the renal denervation group. In the crossover group, the 6-month drop in office SBP and 24-hour ambulatory SBP were -17.7 mm Hg (p<0.001 for comparison with baseline) and -9.2 mm Hg (p<0.001 for comparison with baseline), respectively. In the non–crossover group, 48 subjects had 12-month data available. Among those, the change in office SBP from baseline to 6 months was -32.9 mm Hg; the change in office SBP from 6 to 12 months was an increase of 11.5 mm Hg, for an overall SBP drop from baseline to 12 months of -21.4 mm Hg.

Additional analyses from Symplicity HTN-3 have reported on the effects of renal denervation on nocturnal blood pressure and cardiac physiology and analyses of population subgroups. (9-11)

SYMPLICITY HTN-2
The Symplicity HTN-2 trial was a multicenter, unblinded RCT evaluating renal sympathetic denervation versus standard pharmacologic treatment for patients with resistant hypertension.(12) A total of 106 patients with an SBP of at least 160 mm Hg, despite 3 or more antihypertensive medications were enrolled. The trial was unblinded, and clinicians ascertaining outcomes were not blinded to treatment assignment. Patients were followed for 6 months with the primary endpoint being the between-group difference in the change in blood pressure over the course of the trial. Secondary outcomes included a composite outcome of adverse cardiovascular events and adverse effects of treatment. Baseline blood pressure was 178/98 in the RFA group and 178/97 in the control group.

At 6-month follow-up, the blood pressure reductions in the RFA group were 32 mm Hg systolic (SD =23) and 12 mm Hg diastolic (SD =11). In the control group, there was a 1 mm Hg increase in SBP and no change for DBP (p<0.001 for both SBP and DBP differences). The percent of patients who achieved an SBP of 140 or less was 39% (19/49) in the RFA group compared with 6% (3/51) in the control group (p<0.001). There was no difference in renal function, as measured by serum creatinine, between groups at the 6-month time period. There were 3 patients in the RFA group who had adverse cardiovascular events compared with 2 in the control group (p=NS). Other serious adverse events requiring admission in the RFA group included one case each of nausea/vomiting, hypertensive crisis, transient ischemic attack, and hypotension.

One-year follow-up data from the Symplicity HTN-2 trial were reported in 2013.(13) This report included 47 of the 52 patients originally randomized to the RFA group, who were subsequently followed in an uncontrolled fashion after the 6-month follow-up. It also included 6-month follow-up of patients originally randomized to the control group, who were then offered crossover to RFA after 6 months. A total of 46 of 54 patients accepted crossover to RFA; 35 were available at the 12-month time point. For the patients originally randomized to RFA, the decrease in blood pressure at 12 months was 28.1±24.9 mm Hg for SBP and 9.7±10.6 mm Hg for DBP. These decreases in blood pressure were not significantly different from those reported at the 6-month time point (31.7±23.1 mm Hg systolic, 11.7±11.2 mm Hg diastolic). For the crossover group, the decrease in blood pressure 6 months after renal denervation was 23.7±27.5 mm Hg systolic and 8.4±12.1 mm Hg diastolic. There were 2 procedural complications in the crossover group, one patient with a dissection of the renal artery and one patient with a hypotensive episode.

Three-year follow-up data from the Symplicity HTN-2 trial were reported in 2014. (14) Follow-up was available for 40 of 52 subjects in the initial RFA group and for 30 of 37 subjects who were initially in the control group but who crossed over and received renal denervation 6 months after enrollment. After 30 months, the mean change in SBP was -34 mm Hg (95% CI: -40 to -27, p<0.01) and the mean change in DBP was -13 mm Hg (95% CI: -16 to -10, p<0.01). The degree of blood pressure change was similar between the randomized and crossover subjects. Subjects in the initial RFA group who had follow-up available at 36 months; at that point, the mean change in SBP was -33 mm Hg (95% CI: -40 to -25, p<0.01) and the mean change in DBP was -14 mm Hg (95% CI: -17 to -10, p<0.01). Beyond 12 months of follow-up, safety events included 5 hypertensive events requiring hospitalization; 1 case of mild transient acute renal failure due to dehydration; 2 episodes of atrial fibrillation requiring hospitalization; 1 case of acute renal failure due to acute interstitial nephritis that was deemed unrelated to renal denervation treatment; and 3 deaths that were deemed unrelated to the device or therapy.

The main limitations of this RCT are that it is small in size, unblinded, and has only a relatively short follow-up for the controlled portion of the trial. A trial with a sham control would allow better determination of whether the treatment effect was due to a placebo effect, or other non-specific effects of being in a trial. The 6-month follow-up reported for the controlled portion of the trial is too short to ascertain whether the reduction in blood pressure is likely to reduce adverse cardiovascular outcomes such as myocardial infarction and stroke. The 12- and 36-month follow-up reports provide some insight into longer-term outcomes following the procedure, although comparison with a control group is no longer possible due to the crossover design.

It is unknown whether re-innervation of the renal sympathetic nerves occurs post-treatment. If reinnervation does occur, the efficacy of the procedure will diminish over time. The blood pressure change appears to be stable over the longer-term follow-up studies, suggesting that re-innervation did not occur in the 36-month follow-up.

Mathiassen et al

In 2016, Mathiassen et al reported results of an additional sham-controlled, double-blind randomized trial to evaluate the efficacy of renal denervation in patients with treatment-resistant refractory hypertension.(15) In this trial, 69 patients with treatment-resistant hypertension were randomized to renal denervation (n=36) or sham...
treatment (n=33). For the study’s primary efficacy end point, reduction in daytime systolic ambulatory blood pressure (after adjustment for changes in antihypertensive medications), there were no significant between-group differences at 3 months (-6.1 mm Hg for renal denervation vs -4.7 mm Hg for sham, p=0.73) or at 6 months (-6.9 mm Hg for renal denervation vs -2.6 mm Hg for sham, p=0.35).

Other RCTs
Desch et al. reported results from a smaller RCT comparing renal sympathetic denervation with sham control among patients with treatment-resistant hypertension but only mildly elevated blood pressures (daytime SBP 135-149 mm Hg and DBP 90-94 mm Hg on 24 ambulatory monitoring). (16) Seventy-one patients were randomized to denervation (n=35) or sham control (n=35). Subjects and all investigators except for the physicians performing the active and sham procedures were blinded to treatment group. For the study’s primary end point, in intention-to-treat analysis, the mean change in 24-hour SBP at 6 months was -7.0 mm Hg for patients in the renal denervation group, compared with -3.5 mm Hg in the sham control group (p=0.15). In a per protocol analysis, which excluded 2 patients in the renal denervation group who had incomplete procedures due to difficult anatomy or technical problems and 1 patient for preexisting severe renal artery stenosis detected at 6 months, and 1 patient in the sham control group who did not receive the sham procedure, the change in 24-hour SBP at 6 months was -8 mm Hg in the renal denervation group, compared with -3.5 mmHg in the sham control group (p=0.042). The authors note that the trial may have been underpowered to detect a significant SBP effect. A predefined subanalysis of this study reported on exercise blood pressure.(17)

Kario et al. reported results of the SYMPLECTIC HTN-Japan study, which was an RCT comparing renal sympathetic denervation with standard pharmacotherapy in subjects with treatment-resistant hypertension.(18) Enrollment was initially planned for 100 subjects, but the trial was halted early after results of the SYMPLECTIC HTN-3 trial were published, after the randomization of 41 subjects (n=22 to renal denervation, n=19 to control). At 6 months, the change in SBP in renal denervation subjects was not significantly different than the change in SBP in control subjects (between-group difference, -8.6; 95% CI: -21.1 to 3.8; p=0.169). No major adverse events occurred. The authors note that the study was underpowered due to the early termination.

Fadl Elmula et al. reported results from a smaller RCT that compared renal denervation with clinically-adjusted drug treatment in treatment-resistant hypertension after patients with poor drug adherence were excluded. (19) The study enrolled patients with office SBP greater than 140 mm Hg, in spite of maximally tolerated doses of at least 3 antihypertensive drugs, including a diuretic, and required that patients had an ambulatory daytime SBP greater than 135 mm Hg after witnessed intake of antihypertensive drugs. Twenty patients were randomized, 10 to adjusted drug treatment and 10 to renal denervation with the Symplicity renal denervation catheter (1 of whom was subsequently excluded due to a diagnosis of secondary hypertension). In the drug-adjusted group, the office SBP changed from 160±14 mm Hg at baseline to 132±10 mm Hg at 6-month follow-up (p<0.000); in the renal denervation group, the office SBP changed from 156±13 mm Hg at baseline to 148±7 mm Hg at 6-month follow-up (p=0.42). SBP and DBP were significantly lower in the drug-adjusted group at 6-month follow-up. An additional randomized study compared RFA of the renal arteries plus cardiac ablation for atrial fibrillation (pulmonary vein isolation) with ablation for atrial fibrillation alone in 27 patients with refractory atrial fibrillation and resistant hypertension. (20) End points of this study included both blood pressure control and recurrence of atrial fibrillation. Patients who received RFA of the renal arteries had significant reductions in SBP (181±7 mm Hg to 156±5 mm Hg) and DBP (96±6 mm Hg to 87±4 mm Hg), compared with no reduction in the control group (p<0.001). The percentage of patients who were free of atrial fibrillation at 12 months post-treatment was higher in the group receiving renal artery denervation (69% vs 29%, p=0.033).

In 2015, Schneider et al published the ISAR-denerve study, which evaluated the results of renal denervation in patients after renal transplantation. Eighteen patients were randomized 1:1 to renal denervation or best medical therapy alone. (21) The study was unblinded. Office blood pressure was measured at 30 days and 6 months postprocedure. For the primary efficacy end point of mean change in office blood pressure from baseline to 6 months postrandomization, a difference of 24/11 in reduction in office-based blood pressure was noted between groups (p<0.001 for SBP and p=0.09 for DBP; CIs not reported) at 6 month-follow-up. There was no change in mean 24-hour ambulatory blood pressure monitoring for either group.

In the DENERVHta study, 27 patients with hypertension resistant to 3 drugs were randomized 1:1 to renal denervation (n=13) or the addition of spironolactone (n=14). (22) Subjects and investigators were unblinded. Eleven and 12 subjects in the renal denervation and spironolactone groups, respectively, completed the study;
analysis was intention-to-treat. At 6 months, after adjusting for age, sex, and baseline 24-hour SBP, there was a significantly greater reduction in 24-hour ambulatory SBP in the spironolactone group of -17.9 mm Hg (95% CI -30.9 to -4.9 mm Hg, P=0.01), with similar reductions in 24-hour ambulatory DBP. There were no statistically significant differences in office blood pressure between groups.

Section Summary: RCTs of Renal Denervation

Several RCTs have compared renal denervation with drug therapy for the treatment of resistant hypertension, with conflicting results. The most rigorous evidence about the efficacy of renal denervation comes from the largest of these trials, the Symplicity HTN-3 trial, which used a single-blinded, sham-controlled design to reduce the risk of placebo effect and showed no significant improvements in blood pressure control with renal denervation at 6 months. Another smaller trial which used sham control reported discrepant results between intention-to-treat and per-protocol analysis, but showed no significant improvements in SBP for patients treated with renal denervation compared with controls. Other trials which did not use a sham-control design, including the DENERHTN and Symplicity HTN-2 trials, did find a significant benefit in patients treated with renal denervation. A potential explanation for the difference in findings between the Symplicity HTN-3 trial and is that the treatment effect seen in nonblinded trials may have been due to a placebo effect, or other nonspecific effects of being in a trial. Alternatively, blood pressure control in the control arm may have been better in Simplicity HTN-3 trial compared with earlier studies.

Systematic Reviews

Multiple systematic reviews have summarized the key RCTs evaluating renal denervation. The characteristics of the systematic reviews are summarized in Table 1, and the key results are summarized in Table 2. The overall results vary depending on the inclusion of earlier studies that are unblinded, and controlled but nonrandomized studies, with some systematic reviews reporting significant improvements with renal denervation and some reporting no significant improvement.

Table 1. Systematic Reviews Characteristics of Controlled Trials on Renal Denervation

<table>
<thead>
<tr>
<th>Study (Year)</th>
<th>Dates</th>
<th>Trials</th>
<th>N (Range)</th>
<th>Design</th>
<th>Duration</th>
<th>Outcome</th>
</tr>
</thead>
</table>

BP: blood pressure; CT: controlled trial; DBP: diastolic blood pressure; RCT: randomized controlled trial; SBP: systolic blood pressure.

Table 2. Systematic Reviews Outcome Results of Controlled Trials of Renal Denervation

<table>
<thead>
<tr>
<th>Study (Year)</th>
<th>Treatment Type</th>
<th>Comparator Type</th>
<th>Trials</th>
<th>Outcome</th>
<th>SMD, mm Hg</th>
<th>95% CI, mm Hg</th>
<th>p</th>
<th>I²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fad Elmula (2015)(23)</td>
<td>RD</td>
<td>Control</td>
<td>15</td>
<td>SBP</td>
<td>-4.89</td>
<td>-20.9 to 11.1</td>
<td>0.47</td>
<td>91.7%</td>
</tr>
<tr>
<td>Sun (2015)(24)</td>
<td>RD</td>
<td>Control</td>
<td>9</td>
<td>SBP</td>
<td>-12.81</td>
<td>-22.77 to -2.85</td>
<td>0.01</td>
<td>92%</td>
</tr>
<tr>
<td>Zhang (2016)(25)</td>
<td>RD</td>
<td>Control</td>
<td>8</td>
<td>DBP</td>
<td>-5.56</td>
<td>-8.15 to -2.97</td>
<td><0.001</td>
<td>63%</td>
</tr>
<tr>
<td>Yao (2016)(26)</td>
<td>RD</td>
<td>Control</td>
<td>8</td>
<td>SBP</td>
<td>-8.23</td>
<td>-16.86 to 0.39</td>
<td><0.001</td>
<td>93%</td>
</tr>
</tbody>
</table>

CI: confidence interval; DBP: diastolic blood pressure; RCT: randomized controlled trial; RD: renal denervation; SBP: systolic blood pressure; SMD: standardized mean difference.

Several systematic reviews that have included RCTs and nonrandomized studies have been published. In 2014, Kwok et al published a systematic review on renal denervation that included 3 RCTs (the Symplicity HTN-3 trial, the Symplicity HTN-2 trial, and Pokushalov et al, described in the Randomized Controlled Trials section), 8 prospective observational studies, and 1 observational study with matched controls.(27) Similarly, Panchoy et al published a meta-analysis of renal denervation that included the same 3 RCTs, along with 2 nonrandomized controlled trials.(28) Previous systematic reviews and meta-analyses, including those by Davis et al(29) and Shantha et al,(30) did not include the Symplicity HTN-3 trial or subsequently reported RCTs.
Nonrandomized Comparative Studies
Several nonrandomized studies with a control group have been published. The populations from some of these studies overlap to a large extent with the Symplicity HTN-2 trial. Additional cases may have been added to the study population using the same eligibility criteria, and only a small number of control patients were included in the analyses. Thus, these comparisons are not considered randomized. These studies examine different physiologic outcomes in addition to changes in blood pressure.

Multiple additional nonrandomized comparative studies exist. Given the multiple randomized studies, these studies add little to the overall body of evidence, and are not discussed further here. (31-34)

Ongoing and Unpublished Clinical Trials
Some currently unpublished trials that might influence this review are listed in Table 3.

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT01459900</td>
<td>Renal Sympathectomy in Treatment Resistant Essential Hypertension, a Sham Controlled Randomized Trial</td>
<td>70</td>
<td>Apr 2015 (ongoing)</td>
</tr>
<tr>
<td>NCT01366625</td>
<td>Effects of Renal Denervation on Blood Pressure and Clinical Course of Obstructive Sleep Apnea in Patients With Resistant Hypertension</td>
<td>60</td>
<td>Dec 2015 (ongoing)</td>
</tr>
<tr>
<td>NCT01505010</td>
<td>Investigator-Steered Project on Intravascular Renal Denervation for Management of Drug-Resistant Hypertension</td>
<td>240</td>
<td>Apr 2016 (ongoing)</td>
</tr>
<tr>
<td>NCT01901549</td>
<td>Renal Denervation in Patients After Acute Coronary Syndrome</td>
<td>80</td>
<td>Jun 2016 (ongoing)</td>
</tr>
<tr>
<td>NCT01583881</td>
<td>Sympathetic Renal Denervation in Heart Failure With Normal LV Ejection Fraction: Denervation of the renAL sympathetic nerves in Heart Failure With normal LV Ejection Fraction</td>
<td>60</td>
<td>Jul 2016 (ongoing)</td>
</tr>
<tr>
<td>NCT02041130</td>
<td>Renal Sympathectomy in Heart Failure (the RESPECT-HF Study) - a Study of Renal Denervation for Heart Failure With Preserved Ejection Fraction</td>
<td>144</td>
<td>Dec 2016</td>
</tr>
<tr>
<td>NCT01522430</td>
<td>Denervation of Renal Sympathetic Activity and Hypertension Study</td>
<td>120</td>
<td>Dec 2016</td>
</tr>
<tr>
<td>NCT02021019</td>
<td>Renal Denervation to Improve Outcomes in Patients With End-stage Renal</td>
<td>100</td>
<td>Dec 2016</td>
</tr>
<tr>
<td>NCT02029885</td>
<td>Wave IV Study: Phase II Randomized Sham Controlled Study of Renal Denervation for Subjects With Uncontrolled Hypertension</td>
<td>132</td>
<td>Mar 2018</td>
</tr>
<tr>
<td>NCT02439749</td>
<td>Global Clinical Study of Renal Denervation With the Symplicity Spyral™ Multi-electrode Renal Denervation System in Patients With Uncontrolled Hypertension in the Absence of Antihypertensive Medications (SPYRAL HTN-OFF MED)</td>
<td>120</td>
<td>Jul 2020</td>
</tr>
<tr>
<td>NCT02439775</td>
<td>Global Clinical Study of Renal Denervation With the Symplicity Spyral™ Multi-electrode Renal Denervation System in Patients With Uncontrolled Hypertension on Standard Medical Therapy (SPYRAL HTN-ON MED)</td>
<td>100</td>
<td>Sep 2020</td>
</tr>
<tr>
<td>Unpublished</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT01895140</td>
<td>A Pragmatic Randomized Clinical Evaluation of Renal Denervation for Treatment Resistant Hypertension</td>
<td>104</td>
<td>Oct 2014 (terminated)</td>
</tr>
<tr>
<td>NCT01628172</td>
<td>Renal Sympathetic Denervation for the Management of Chronic Hypertension</td>
<td>96</td>
<td>Mar 2014 (completed)</td>
</tr>
<tr>
<td>NCT01932450</td>
<td>A Randomized, Open-label Study Investigating the Effect of Bilateral Renal Artery Sympathetic Denervation by Catheter-based Radiofrequency Ablation on Blood Pressure and Disease Progression in Autosomal Dominant Polycystic Kidney Disease</td>
<td>100</td>
<td>Jul 2015 (unknown)</td>
</tr>
<tr>
<td>NCT02039492</td>
<td>Sympathetic Renal Denervation Versus Increment of Pharmacological Treatment in Resistant Arterial Hypertension</td>
<td>50</td>
<td>Dec 2015 (completed)</td>
</tr>
<tr>
<td>NCT01911078</td>
<td>Renal Sympathetic Denervation in Metabolic Syndrome (Metabolic Syndrome Study)</td>
<td>20</td>
<td>Jun 2016 (completed)</td>
</tr>
<tr>
<td>NCT01850901</td>
<td>Renal Sympathetic Denervation as a New Treatment for Therapy Resistant Hypertension - A Multicenter Randomized Controlled Trial</td>
<td>300</td>
<td>Jun 2016 (unknown)</td>
</tr>
</tbody>
</table>
Summary of Evidence
For individuals who have hypertension resistant to standard medical management who receive radiofrequency ablation (RFA) of the renal sympathetic nerves, the evidence includes at least 10 randomized controlled trials (RCTs), along with multiple nonrandomized comparative studies and case series. Relevant outcomes are symptoms, change in disease status, morbid events, medication use, and treatment-related morbidity. The largest trial, the Symplicity HTN-3 trial, which used a sham-controlled design to reduce the likelihood of placebo effect, demonstrated no significant differences between renal denervation and sham-control patients in office-based or ambulatory blood pressure at 6-month follow-up. Results from Symplicity HTN-3 are supported by a subsequent sham-controlled trial. The Symplicity HTN-3 results were in contrast to additional studies, including Symplicity HTN-2 and DENERHTN, which reported efficacy in reducing blood pressure over a 6-month time period compared with a control group. Additional smaller RCTs, some of which were stopped early after results of the Symplicity HTN-3 trial became available, did not demonstrate significantly improved outcomes with renal denervation. Single-arm studies with overlapping populations have reported improvements in blood pressure and related physiologic parameters, such as echocardiographic measures of left ventricular hypertrophy, that appear to be durable up to 24 months of follow-up. The body of evidence for the use of renal denervation to treat hypertension consists of RCTs that have conflicting results. The strongest evidence comes from sham-controlled trials, the largest of which found no significant benefits with renal denervation. The evidence is insufficient to determine the effects of the technology on health outcomes.

Practice Guidelines and Position Statements

American Heart Association et al
In 2015, the American Heart Association, American College of Cardiology, and American Society of Hypertension issued guidelines on the treatment of hypertension in patients with coronary artery disease, which makes the following statements regarding renal denervation:(35)
“In the first large-scale clinical trial of renal denervation in patients with resistant hypertension, with an appropriate control group, namely a sham procedure (Renal Denervation in Patients With Uncontrolled Hypertension [SYMPPLICITY HTN-3]), there was no significant difference between the 2 groups in the reduction of SBP, which leaves the future of renal denervation in the management of hypertension uncertain. The impact of renal denervation in HF patients is also unclear, and future randomized trials are needed to clarify its role in this patient population.”

Joint UK Societies
In 2015, the Joint UK Societies issued an expert consensus statement on renal denervation for resistant hypertension which concludes:(36)
“The Joint UK Societies does not recommend the use of renal denervation for treatment of resistant hypertension in routine clinical practice but remains committed to supporting research activity in this field.”

Eighth Joint National Committee
In 2014, the Eighth Joint National Committee, which was appointed to provide recommendations on hypertension treatment, published an evidence-based guideline for the management of hypertension in adults.(37) This guideline did not discuss the use of renal denervation.

European Society of Cardiology
In 2013, the European Society of Cardiology issued an expert consensus statement on catheter-based renal denervation that makes the following conclusions(38):
“Current evidence from the available clinical trials strongly support the notion that catheter-based radiofrequency ablation of renal nerves reduces blood pressure and improves blood pressure control in patients with drug-treated resistant hypertension, with data now extending out to 36 months. Accordingly, renal denervation can be considered as a therapeutic option in patients with resistant hypertension, whose blood pressure cannot be controlled by a combination of lifestyle modification and pharmacological...
therapy according to current guidelines."

The statement outlined the following criteria patients should meet before renal denervation is considered:

- Office-based SBP ≥160 mm Hg (≥150 mm Hg in type 2 diabetes.)
- ≥3 antihypertensive drugs in adequate dosage and combination (including a diuretic).
- Lifestyle modification.
- Exclusion of secondary hypertension.
- Exclusion of pseudoresistance using ambulatory blood pressure monitoring (average BP >130 mm Hg or mean daytime BP >135 mm Hg).
- Preserved renal function (GFR ≥45 mL/min/1.73 m²).
- Eligible renal arteries: no polar or accessory arteries; no renal artery stenosis; no prior revascularization.

U.S. Preventive Services Task Force Recommendations

Not applicable

Medicare National Coverage

There is no national coverage determination (NCD). In the absence of an NCD, coverage decisions are left to the discretion of local Medicare carriers.

References

18 2012;126(25):2976-2982. PMID 23248063
36. Lobo MD, de Belder MA, Cleveland T, et al. Joint UK societies' 2014 consensus statement on renal

Appendix

N/A

History

<table>
<thead>
<tr>
<th>Date</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/15/12</td>
<td>New Policy. Radiofrequency ablation of the renal sympathetic nerves is considered investigational for the treatment of resistant hypertension.</td>
</tr>
<tr>
<td>12/04/13</td>
<td>Replace policy. Policy updated with literature review through July 31, 2013. References 5, 6, 17-21 added. No change in policy statement. Codes 0338T and 0339T added to policy; codes 36251-36254 removed from policy; they are no specific to the procedure.</td>
</tr>
<tr>
<td>11/20/14</td>
<td>Annual Review. Policy updated with literature review through July 31, 2014. References 4-5, 8-9, 11-12, 16, 19, 29-36, 38-43, and 45 added. No change to policy statement.</td>
</tr>
<tr>
<td>11/10/15</td>
<td>Annual Review. Policy updated with literature review through August 3, 2015; references 4-5, 8, 12-13, 16-17, 51, 54-55, and 57-58 added. Policy statement unchanged.</td>
</tr>
<tr>
<td>12/07/15</td>
<td>Update Related Policies. Removed 8.01.57 as it is archived.</td>
</tr>
</tbody>
</table>

Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. The Company adopts policies after careful review of published peer-reviewed scientific literature, national guidelines and local standards of practice. Since medical technology is constantly changing, the Company reserves the right to review and update policies as appropriate. Member contracts differ in their benefits. Always consult the member benefit booklet or contact a member service representative to determine coverage for a specific medical service or supply. CPT codes, descriptions and materials are copyrighted by the American Medical Association (AMA).
©2016 Premera All Rights Reserved.
Discrimination Is Against the Law

Premera Blue Cross complies with applicable Federal civil rights laws and does not discriminate on the basis of race, color, national origin, age, disability, or sex. Premera does not exclude people or treat them differently because of race, color, national origin, age, disability or sex.

Premera:
• Provides free aids and services to people with disabilities to communicate effectively with us, such as:
 • Qualified sign language interpreters
 • Written information in other formats (large print, audio, accessible electronic formats, other formats)
• Provides free language services to people whose primary language is not English, such as:
 • Qualified interpreters
 • Information written in other languages

If you need these services, contact the Civil Rights Coordinator. If you believe that Premera has failed to provide these services or discriminated in another way on the basis of race, color, national origin, age, disability, or sex, you can file a grievance with:
Civil Rights Coordinator - Complaints and Appeals
PO Box 91102, Seattle, WA 98111
Toll free 855-332-4535, Fax 425-918-5592, TTY 800-842-5357
Email AppealsDepartmentInquiries@Premera.com

You can file a grievance in person or by mail, fax, or email. If you need help filing a grievance, the Civil Rights Coordinator is available to help you.

You can also file a civil rights complaint with the U.S. Department of Health and Human Services, Office for Civil Rights, electronically through the Office for Civil Rights Complaint Portal, available at https://ocrportal.hhs.gov/ocr/portal/lobby.jsf, or by mail or phone at:
U.S. Department of Health and Human Services
200 Independence Avenue SW, Room 509F, HHH Building
Washington, D.C. 20201, 1-800-368-1019, 800-537-7697 (TDD)

Getting Help in Other Languages

This Notice has Important Information. This notice may have important information about your application or coverage through Premera Blue Cross. There may be key dates in this notice. You may need to take action by certain deadlines to keep your health coverage or help with costs. You have the right to get this information and help in your language at no cost. Call 800-722-1471 (TTY: 800-842-5357).

中文 (Chinese): 本通知有重要的訊息。本通知可能有關於您透過 Premera Blue Cross 提交的申請或保險的重要訊息。本通知可能有重要日期，您可能需要在截止日期之前採取行動，以保留您的健康保險或費用補貼。您有權利免費以您的母語得到本訊息和幫助。請撥電話 800-722-1471 (TTY: 800-842-5357)。

Kreyòl ayisyen (Creole): Avi sila a gen Enfomyasen Enpòtan idann. Avi sila a ka kapab genyen enfomyasen enpòtan konsènan aplikasyon yon lan oswa konèsann kouvètiyit a nterr a lan atraver Premera Blue Cross. Kapab genyen dat ki enpòtan nan avi sila a. Ou ka gen pou pran këk akson avan senten dòm pèt pou ka tenbe kouveti ariansi sante yon lan oswa pou yo ka ede yon avèk depans yo. Se dwa w pou resewwa enfomyasen a a ak asistans nan lang ou pale a, san ou pa gen pou peye pou sa. Rate nan 800-722-1471 (TTY: 800-842-5357).

Hmoob (Hmong): Tsab ntaww tshaj xoo no muaj cov ntshib lus tseem ceeb. Tej zaum tsab ntaww tshaj xoo no muaj cov ntshib lus tseem ceeb bxog koj daim ntaww thov kip pab los yog koy qhov kip pab cuam los ntaww Premera Blue Cross. Tej zaum muaj cov hnb tseem ceeb cuam sau rau hauv daim ntaww no. Tej zaum koj koy juv uat uaq yen uas peb kom koj uas tib pub dhuav cov caj nyog uas teev tseng rau hauv daim ntaww no mas koj tshaj juv uat basu kip pab cuam kho mosh los yog kip pab them tej nqi kho mbo ntaww. Koj muaj cai kom lawv muab cov ntshib lus no uas tau muab sau uaj koj hom lus pub dawb rau koj. Hu rau 800-722-1471 (TTY: 800-842-5357).

Iloko (Ilocano): Daytoy a Pakdaak ket naglaon iti Napateg nga Impomarsion. Daytoy a pakdaak mabalay nga adda ket naglaon iti napateg nga impomarsion mapeenggpe iti aplikasyon ceng coverage baben a Premera Blue Cross. Daytoy ket mabalay dagiti importante a petsa iti daytoy a pakdaak. Mabalay nga adda rumbeng nga aramideny nga adda sakkay dagiti partikular a naituding nga adda aldaw tapno mapagtalainedyo ti coverage ti salun-atyo wenno tulong kadagiti gastos. Adda karbenganyo a mangala iti daytoy nga impomarsion ken tulong iti bukodyo a pagasasao nga awan ti bayadanyo. Tumawag ti numero nga 800-722-1471 (TTY: 800-842-5357).
