Pharmacologic Treatment of Cystinosis

Effective Date: Oct. 1, 2019
Last Revised: Sept. 10, 2019
Replaces: N/A

RELATED MEDICAL POLICIES:
None

Introduction

Cystinosis is a rare, inherited disease that is caused by a change (mutation) in the CTNS gene. The CTNS gene provides instructions to help move an amino acid called cystine out of cells and into other areas of the body, like the digestive system, immune system, skeletal system, skin, and hair. Cystinosis occurs when cystine doesn’t move out of cells and instead builds up and forms crystals that cause cell death. Cystinosis slowly damages and destroys organs, including the kidneys, liver, eyes, muscles, and brain. The kidneys and the eyes are the organs that are most affected. Three types of cystinosis exist based on the age of onset and how severe the symptoms are: nephropathic (infancy), late-onset (teens to adults), and ocular, or “benign” (adults). Treatment of cystinosis is meant to remove cystine from the cells and delay any further damage to organs in the body. This policy describes when drugs used to treat cystinosis may be considered medically necessary.

Note: The Introduction section is for your general knowledge and is not to be taken as policy coverage criteria. The rest of the policy uses specific words and concepts familiar to medical professionals. It is intended for providers. A provider can be a person, such as a doctor, nurse, psychologist, or dentist. A provider also can be a place where medical care is given, like a hospital, clinic, or lab. This policy informs them about when a service may be covered.
<table>
<thead>
<tr>
<th>Drug</th>
<th>Medical Necessity</th>
</tr>
</thead>
</table>
| **Cystagon® (cysteamine bitartrate) capsules** | *Cystagon® (cysteamine bitartrate) may be considered medically necessary for the treatment of adult and pediatric patients with nephropathic cystinosis when the following criteria are met:*
- Patient has a confirmed diagnosis of cystinosis by one of the following methods:
 - Elevated cystine content of peripheral blood leukocyte or fibroblasts
 - Cystine corneal crystals by the slit lamp examination
 - Confirmed mutation of the CTNS gene |
| **Procysbi® (cysteamine bitartrate) delayed-release capsules** | *Procysbi® (cysteamine bitartrate) may be considered medically necessary for the treatment of adult and pediatric patients with nephropathic cystinosis when the following criteria are met:*
- Patient is 1 year of age or older
 AND
- Patient has a confirmed diagnosis of cystinosis by one of the following methods:
 - Elevated cystine content of peripheral blood leukocyte or fibroblasts
 - Cystine corneal crystals by the slit lamp examination
 - Confirmed mutation of the CTNS gene
 AND
- Patient has tried Cystagon® (cysteamine bitartrate) and has documentation of one of the following:
 - Inadequate response after 6-months of treatment
 - Had intolerance to use of Cystagon® (cysteamine bitartrate) |
Drug | **Medical Necessity**
--- | ---
Cystaran® (cysteamine ophthalmic solution) | Cystaran® (cysteamine ophthalmic solution) may be considered medically necessary for the treatment of corneal cystine crystal accumulation when the following criteria are met:
• Patient has a confirmed diagnosis of cystinosis by one of the following methods:
 o Elevated cystine content of peripheral blood leukocyte or fibroblasts
 OR
 o Cystine corneal crystals by the slit lamp examination
 OR
 o Confirmed mutation of the CTNS gene

<table>
<thead>
<tr>
<th>Drug</th>
<th>Investigational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystagon® (cysteamine bitartrate), Procysbi® (cysteamine bitartrate), Cystaran® (cysteamine ophthalmic solution)</td>
<td>All other uses of Cystagon® (cysteamine bitartrate), Procysbi® (cysteamine bitartrate) and Cystaran® (cysteamine ophthalmic solution) for conditions not outlined in this policy are considered investigational.</td>
</tr>
</tbody>
</table>

Length of Approval

<table>
<thead>
<tr>
<th>Approval</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial authorization</td>
<td>All drugs listed in policy may be approved up to 6 months.</td>
</tr>
<tr>
<td>Re-authorization criteria</td>
<td>Future re-authorization of all drugs listed in policy may be approved up to 2 years as long as the drug-specific coverage criteria are met and chart notes demonstrate that the patient continues to show a positive clinical response to therapy.</td>
</tr>
</tbody>
</table>

Documentation Requirements

The patient’s medical records submitted for review for all conditions should document that medical necessity criteria are met. The record should include the following:
• Office visit notes that contain the diagnosis, relevant history, physical evaluation and medication history
Consideration of Age

The ages stated in this policy for which Cystagon® (cysteamine bitartrate), Procysbi® (cysteamine bitartrate) and Cystaran® (cysteamine ophthalmic solution) are considered medically necessary are based on the ages approved in the FDA labeling.

Benefit Application

This policy is managed through the Pharmacy benefit.

Background

Cystinosis is a metabolic disease that results from mutations in the CTNS gene located at 17p13a. These mutations cause a defect in the transporter for cystine resulting in intracellular accumulation of cystine, which crystallizes and causes cell death. Cystinosis slowly destroys the organs in the body including the kidneys, liver, eyes, muscles and the brain. There are three types of cystinosis:

1. Infantile (nephropathic)
2. Late-onset (juvenile)
3. Adult (benign)

Cystinosis is an “orphan” disease that affects approximately 1 in 100,000 to 200,000. Cystinosis is an autosomal recessive genetic disease meaning both parents are carriers of the abnormal gene that leads to this condition but they themselves do not exhibit any of the symptoms of cystinosis.

Nephropathic cystinosis in untreated children is characterized by renal tubular Fanconi syndrome, poor growth, impaired glomerular function, and accumulation of cystine crystals leading to tissue destruction. Cysteamine therapy should be started as soon as the diagnosis of cystinosis is confirmed as it preserves renal function and improves growth in affected children. The administration of cysteamine directly treats the disease by reducing the intracellular cystine content. Cysteamine is an aminothiol that participates within lysosomes in a thiol-disulfide interchange reaction converting cystine into cysteine and cysteine-cysteamine mixed disulfide, both of which can exit the lysosome in patients with cystinosis.

Summary of Evidence

Cystagon® (cysteamine bitartrate)

The National Collaborative Cysteamine Study (NCCS) treated 94 children (mainly from the United States) with nephropathic cystinosis with increasing doses of cysteamine HCl (mean dose 54 mg/kg/day) to attain white cell cystine levels of less than 2 nmol/½ cystine/mg protein 5 to 6 hours post-dose, and compared their outcome with an historical control group of 17 children who had been in the placebo group of a randomized placebo-controlled trial of ascorbic acid. Cysteamine treated patients had been diagnosed at a mean age of 22 months and were a mean age of 46 months old at study entry; placebo patients had been diagnosed at about 29 months and were a mean age of about 52 months old at study entry. The principal measures of effectiveness were serum creatinine and calculated creatinine clearance and growth (height).

The average median white cell cystine level attained during treatment in the NCCS was 1.7 ± 0.2 nmol/½ cystine/mg protein. There were 70 cysteamine patients with baseline serum creatinine less than 2 mg/dL who were followed for at least a year and 17 placebo patients. Twelve of the 94 cysteamine treated patients required early dialysis or renal transplant. Median follow-up of cysteamine patients was over 32 months and 20% were followed more than 5 years. For the placebo group median follow-up was 20 months and only one was followed more than 24 months. Among cysteamine patients glomerular function was maintained over time despite the longer period of treatment and follow-up. Placebo treated patients, in contrast, experienced a
gradual rise in serum creatinine. Height, corrected for age, was compared for treated patients with the height, at the various ages patients appeared, of the 143 patients initially screened for inclusion in the NCCS. Patients on treatment maintained growth (did not show increasing growth failure compared to normals) although growth velocity did not increase enough to allow patients to catch up to age norms. Renal tubular function was not affected by treatment.

Calculated creatinine clearances were evaluated for two groups of children, one with poor white cell cystine depletion and one with good white cell cystine depletion. The final mean creatinine clearance of the good depletion group was 20.8 ml/min/1.73 m2 greater than the mean for the poor depletion group, despite the older mean age of the good depletion group.

The Long Term Study, initiated in 1988, utilized both cysteamine HCl and phosphocysteamine (patient’s choice) in 46 patients who had completed the NCCS (averaging 6.5 years of treatment) and 93 new patients. Patients had cystinosis diagnosed by elevated white cell cystine (mean 3.63 nmol/½ cystine/mg). New patients and 46 continuing patients were required to have serum creatinine less than 3.0 mg/dL and 4.0 mg/dL, respectively. Patients were randomized to doses of 1.3 or 1.95 g/m2/day and stratified according to whether the serum creatinine was above 1.2 mg/dL or not. Doses could be raised if white cell cystine levels were approximately 2 nmol/½ cystine/mg protein and lowered due to intolerance.

Mean doses were 1.27 g/m2/day and 1.87 g/m2/day in the two groups and white cell cystine levels averaged 1.72 ± 1.65 nmol/½ cystine/mg protein and 1.86 ± 0.92 nmol/½ cystine/mg protein in the 1.3 and 1.95 g/m2/day groups, respectively. In new patients, a group similar in age to the NCCS group, serum creatinine was essentially unchanged over the period of follow-up (about half of the patients were followed for 24 months) and phosphocysteamine and cysteamine HCl had similar effects. The long-term follow-up group, about nine years old on average at entry, stayed in the study (almost 80% were followed at least 2 years) and had essentially no change in renal function. In four studies of untreated cystinosis, renal death (need for transplant or dialysis) occurred at median age of less than 10 years. Both groups maintained height (although they did not catch up from baseline). There was no apparent difference between the two doses.

Safety

In three clinical trials, cysteamine or phosphocysteamine have been administered to 246 children with cystinosis. Causality of side effects is sometimes difficult to determine because adverse effects may result from the underlying disease.
The most frequent adverse reactions seen involve the gastrointestinal and central nervous systems. These are especially prominent at the initiation of cysteamine therapy. Temporarily suspending treatment, then gradual re-introduction may be effective in improving tolerance.

Adverse reactions were not collected systematically in the NCCS, but were often listed by investigators. The following rates may therefore be underestimated. The most common events (> 5%) were vomiting 35%, anorexia 31%, fever 22%, diarrhea 16%, lethargy 11%, and rash 7%.

Procysbi® (cysteamine bitartrate)

Procysbi is a delayed-release oral formulation of cysteamine bitartrate. Results demonstrated that at steady state, delayed-release cysteamine administered every 12 hours was noninferior to immediate-release cysteamine administered every 6 hours in depleting WBC cystine levels. As per the FDA per protocol analysis of 39 patients, the least-square-mean value of WBC cystine was 0.52 ± 0.06 nmol ½ cystine/mg protein after 12 hours under delayed-release cysteamine and 0.44 ± 0.06 nmol ½ cystine/mg protein after 6 hours under immediate-release cysteamine. Absolute difference of 0.08 ± 0.03 (95.8% CI: 0.01 to 0.15). This confidence interval did not include the non-inferiority margin of 0.30 nmol ½ cystine/mg protein. The analysis by the sponsor reported in the published paper included 38 patients in the per-protocol analysis and 41 patients in the ITT analysis. The results were not materially different in the sponsor analysis. The outcome of non-inferior WBC cystine levels was achieved at a lower average daily dose of delayed-release cysteamine (1513±477 mg/d) compared with immediate-release cysteamine (1801±511 mg/d).

Pharmacokinetic results shows that Cmax of a larger, single 12-hourly dose of delayed-release cysteamine compared with 2 consecutive 6-hourly doses of immediate-release cysteamine were not very different. As expected, the half-life of delayed-release cysteamine was longer than immediate-release cysteamine.

Results published as an abstract include 20-month data from 40 patients from the pivotal trial who enrolled into the extension phase. This study demonstrated that there was no change in the mean values for WBC cystine in the patients from study onset to the end of 20 months. After 20 months of treatment, the total daily dose of delayed-release cysteamine needed to achieve optimal WBC cystine levels was on average 72% of the initial immediate-release cysteamine dose. Kidney function was well preserved over the length of the study, as indicated by steady eGFR levels. The QOL outcomes measured using a generic instrument PedsQLTM version 4.08 improved significantly. From the study onset, the PedsQLTM scores improved significantly in all
patients, including the Total Functioning Score (p < 0.001) and the Social Performance (p < 0.001).

Safety

The most commonly reported AEs were vomiting, abdominal pain/discomfort, headaches, nausea, diarrhea, anorexia/decreased appetite, breath odor, fatigue, dizziness, skin odor, and rash. The number of GI related AEs was 3-fold higher during the delayed-release cysteamine treatment period compared to the immediate-release cysteamine treatment period. PPI therapy was allowed as per the discretion of the patient and/or the physician during the immediate-release cysteamine treatment period, but was discontinued initially during the delayed-release cysteamine treatment period to maintain an optimal gastric pH environment for kinetics of the delayed-release formulation. Patient or study physician were given the option to restart PPI therapy. The use of PPI therapy was reduced by 87% during the delayed-release cysteamine treatment period, which could have potentially increased the incidence of GI related AEs.

More patients experienced an SAE with delayed-release cysteamine compared to immediate-release cysteamine (6 and 1 respectively). The investigators considered only 1 SAE as possibly related to delayed-release cysteamine treatment. SAEs were cervical femoral fracture from a fall, 1 elective knee surgery, 5 GI-related SAEs, and all SAEs were resolved by site investigator. No unexpected SAEs were reported in the Phase III trial or the extension phase of the study.

Serious adverse events such as skin and bone lesions that resemble clinical findings for Ehlers-Danlos syndrome, severe skin rashes such as erythema multiforme bullosa or toxic epidermal necrolysis, benign intracranial hypertension and neurological complications have been described with use of immediate-release cysteamine. Therefore, caution about the possibility of such adverse reaction should be exercised with delayed-release cysteamine.

Cystaran® (cysteamine ophthalmic solution)

Clinical efficacy was evaluated in controlled clinical trials in approximately 300 patients. The primary efficacy end point was the response rate of eyes that had a reduction of at least 1 unit in the photo-rated Corneal Cystine Crystal Score (CCCS) at some time point during the study when baseline CCCS ≥1, or a lack of an increase of more than 1 unit in CCCS throughout the study when baseline CCCS <1.
Study 1 combined the data from three smaller studies. For eyes with a lower baseline of CCCS <1, the response rate was 13% (4/30) [95% CI: (4, 32)]. For eyes with a higher baseline of CCCS ≥1, the response rate was 32% (94/291) [95% CI: (27, 38)]. Study 2 evaluated ocular cystinosis patients who had a baseline of CCCS ≥1. The response rate was 67% (10/15) [95% CI: (38, 88)]. Study 3 also evaluated ocular cystinosis patients; for eyes with a baseline of CCCS ≥1, the response rate was 33% (3/9) [95% CI: (8, 70)].

Safety

The safety data described reflects exposure in controlled clinical trials of six months to 19 years duration in approximately 300 patients. The most frequently reported ocular adverse reactions occurring in ≥10% of patients were sensitivity to light, redness, and eye pain/irritation, headache and visual field defects.

References

<table>
<thead>
<tr>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/01/19</td>
<td>New policy, approved September 10, 2019. Add to Prescription Drug section. Criteria added for Cystagon® (cysteamine bitartrate), Procysbi® (cysteamine bitartrate) and Cystaran® (cysteamine ophthalmic solution).</td>
</tr>
</tbody>
</table>

Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. The Company adopts policies after careful review of published peer-reviewed scientific literature, national guidelines and local standards of practice. Since medical technology is constantly changing, the Company reserves the right to review and update policies as appropriate. Member contracts differ in their benefits. Always consult the member benefit booklet or contact a member service representative to determine coverage for a specific medical service or supply. CPT codes, descriptions and materials are copyrighted by the American Medical Association (AMA). ©2019 Premera All Rights Reserved.

Scope: Medical policies are systematically developed guidelines that serve as a resource for Company staff when determining coverage for specific medical procedures, drugs or devices. Coverage for medical services is subject to the limits and conditions of the member benefit plan. Members and their providers should consult the member benefit booklet or contact a customer service representative to determine whether there are any benefit limitations applicable to this service or supply. This medical policy does not apply to Medicare Advantage.
Discrimination Is Against the Law

Premera Blue Cross complies with applicable Federal civil rights laws and does not discriminate on the basis of race, color, national origin, age, disability, or sex. Premera does not exclude people or treat them differently because of race, color, national origin, age, disability or sex.

Premera:
• Provides free aids and services to people with disabilities to communicate effectively with us, such as:
 • Qualified sign language interpreters
 • Written information in other formats (large print, audio, accessible electronic formats, other formats)
• Provides free language services to people whose primary language is not English, such as:
 • Qualified interpreters
 • Information written in other languages

If you need these services, contact the Civil Rights Coordinator.

If you believe that Premera has failed to provide these services or discriminated in another way on the basis of race, color, national origin, age, disability, or sex, you can file a grievance with:
Civil Rights Coordinator - Complaints and Appeals
PO Box 91102, Seattle, WA 98111
Toll free 855-332-4535, Fax 425-918-5592. TTY 800-842-5357
Email AppealsDepartmentInquiries@Premera.com

You can also file a grievance in person or by mail, fax, or email. If you need help filing a grievance, the Civil Rights Coordinator is available to help you.

You can also file a civil rights complaint with the U.S. Department of Health and Human Services, Office for Civil Rights, electronically through the Office for Civil Rights Complaint Portal, available at https://ocrportal.hhs.gov/ocr/portal/lobby.jsf, or by mail or phone at:
U.S. Department of Health and Human Services
200 Independence Avenue SW, Room S09F, HHH Building
Washington, D.C. 20201, 1-800-368-1019, 800-537-7697 (TDD)
Complaint forms are available at

Getting Help in Other Languages

This Notice has Important Information. This notice may have important information about your application or coverage through Premera Blue Cross. There may be key dates in this notice. You may need to take action by certain deadlines to keep your health coverage or help with costs. You have the right to get this information and help in your language at no cost.

Call 800-722-1471 (TTY: 800-842-5357).

Oromo (Cushite):

Français (French):

Kreyòl ayisyen (Creole):

Deutsche (German):

Hmoob (Hmong):
Tsaab ntawv tshaj xo no muaj cov ntshiab lus tsem ceeb. Tey jaum tsab ntawv tshaj xo no muaj cov ntshiab lus tsem ceeb txog koj daim ntawv thov kev pab los yoj koj qhv kev pab cuam los ntawm Premera Blue Cross. Tey jaum muaj cov hnuv tsem ceeb cuam sau rau hauv daim ntawv no. Tey jaum koj kuu yuvu ta uu qee yam us peb kom koj us taas pub dhuav coj caj nyong uas teev tsqg rau hauv daim ntawv no mas koj thaj yuvu taas bas kev pab cuam kho tho los yoj koj qhv kev pab them tej nqi kho mob ntawm. Koj muaj cai kom lawv muab cov ntshiab lus no uas u muab sau uu koj hom lus pub dawb rau koj. Hu rau 800-722-1471 (TTY: 800-842-5357).

Ilokano (Ilocano):
Daytoy a Pakdaar ket naglaon iti Napatge nga Impormasjon. Daytoy a pakdaar mabalang nga adda ket naglaon iti napatge nga impormasjon maipanggep iti aplikasyono woy nga coverage babaen iti Premera Blue Cross. Daytoy ket mabalang dagiti importante a pelta iti daytoy a pakdaar. Mabalang nga adda rumbeg nga aramideng nga addang sakbay dagiti partikular a naituding nga addang tapo napagmatlayan ni coverage ti salun-ayyo woy nga tulong kadagit gastos. Adda karbengayo a mangala iti daytoy nga impormasjon ken tulong iti bukodyo a pagasao nga awan ti bayadanyo. Tumawg iti numero nga 800-722-1471 (TTY: 800-842-5357).

Italiano (Italian):