Ultrasonographic Measurement of Carotid Intima-Medial Thickness as an Assessment of Subclinical Atherosclerosis

Policy

Ultrasonographic measurement of carotid artery intima-medial thickness (CIMT) as a technique for identifying subclinical atherosclerosis is considered investigational for use in the screening, diagnosis, or management of atherosclerotic disease.

Related Policies

2.04.509 Cardiovascular Risk Panels

Policy Guidelines

Coding

<table>
<thead>
<tr>
<th>CPT</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0126T</td>
<td>Common carotid intima-media thickness (IMT) study for evaluation of atherosclerotic burden or coronary heart disease risk factor assessment</td>
</tr>
<tr>
<td>93895</td>
<td>Quantitative carotid intima media thickness and carotid atheroma evaluation, bilateral</td>
</tr>
</tbody>
</table>

Description

Ultrasonographic measurement of carotid intima-medial (or intimal-media) thickness (CIMT) refers to the use of B-mode ultrasound to determine the thickness of the two innermost layers of the carotid artery wall, the intima and the media. Detection and monitoring of intima-medial thickening, which is a surrogate marker for atherosclerosis, may provide an opportunity to intervene earlier in atherogenic disease and/or monitor disease progression.
Background
Coronary heart disease (CHD) accounts for 27% of all deaths in the United States. Established major risk factors for CHD have been identified by the National Cholesterol Education Program (NCEP) Expert Panel. These risk factors include elevated serum levels of low-density lipoprotein cholesterol (LDL-C), total cholesterol, and reduced levels of high-density lipoprotein cholesterol. Other risk factors include a history of cigarette smoking, hypertension, family history of premature CHD, and age.

The third report of the NCEP Adult Treatment Panel (ATP III) establishes various treatment strategies to modify the risk of CHD, with emphasis on target goals of LDL-C. Pathology studies have demonstrated that levels of traditional risk factors are associated with the extent and severity of atherosclerosis. ATP III recommends use of the Framingham criteria to further stratify those patients with 2 or more risk factors for more intensive lipid management. However, at every level of risk factor exposure, there is substantial variation in the amount of atherosclerosis, presumably related to genetic susceptibility and the influence of other risk factors. Thus, there has been interest in identifying a technique that can improve the ability to diagnose those at risk of developing CHD, as well as to measure disease progression, particularly for those at intermediate risk.

The carotid arteries can be well-visualized by ultrasonography, and ultrasonographic measurement of the carotid artery intima-media thickness (CIMT) has been investigated as a technique to identify and monitor subclinical atherosclerosis. B-mode ultrasound is most commonly used to measure CIMT. The intima-medial thickness (IMT) is measured and averaged over several sites in each carotid artery. Imaging of the far wall of each common carotid artery yields more accurate and reproducible IMT measurements than imaging of the near wall. Two echogenic lines are produced, representing the lumen-intima interface and the media-adventitia interface. The distance between these two lines constitutes the IMT.

Regulatory Status
In February 2003, SonoCalc® (SonoSite) was cleared for marketing by FDA through the 510(k) process. FDA determined that this software was substantially equivalent to existing image display products for use in the automatic measurement of the IMT of the carotid artery from images obtained from ultrasound systems. Subsequently, several other devices have been approved through the 510(k) process. Product code: LLZ.

Scope
Medical policies are systematically developed guidelines that serve as a resource for Company staff when determining coverage for specific medical procedures, drugs or devices. Coverage for medical services is subject to the limits and conditions of the member benefit plan. Members and their providers should consult the member benefit booklet or contact a customer service representative to determine whether there are any benefit limitations applicable to this service or supply. This medical policy does not apply to Medicare Advantage.

Benefit Application
Ultrasonographic measurement of the carotid intimal-medial thickness may be performed as a function of participation in some clinical trials.

Rationale
This policy was originally created in 2003 and has been updated regularly with searches of the MEDLINE.
Measurement of carotid intima-medial (or intimal-media) thickness (CIMT) is primarily meant to assess risk for future disease, and therefore can be evaluated as a prognostic measure. Assessment of a prognostic measure typically focuses on 3 categories of evidence: (1) technical performance; (2) clinical validity (i.e., statistically significant association between the test result and health outcomes); and (3) clinical utility (i.e., demonstration that use of the prognostic information clinically can alter clinical management and/or improve health outcomes compared with patient management without use of the prognostic tool). In some cases, it is important to evaluate whether the test provides incremental information above the standard workup to determine whether the test has utility in clinical practice.

The literature on use of CIMT for cardiac risk stratification consists of numerous cohort studies and systematic reviews of these cohort studies. The following review includes the largest prospective cohort studies and the most important systematic reviews of these studies.

Prognostic Value

Systematic Reviews

In 2010, Mookadam et al conducted a systematic review of the role of CIMT in predicting individual cardiovascular event risk and as a tool for assessing therapeutic interventions.1 Reviewers concluded that CIMT is an independent risk factor for cardiovascular events and may be useful in determining treatment when there is uncertainty regarding the approach or patient reluctance. However, they recommended further study to identify the best approaches to screening and interventions to prevent progression of atherosclerosis.

In a 2012 meta-analysis, the USE Intima-Media Thickness (USE-IMT) collaboration investigators sought to determine whether common CIMT measurements can assist in estimating the 10-year risk of first-time myocardial infarction (MI) or first-time stroke when added to the Framingham Risk Score.(4) Using individual data for 45,828 patients from 14 population-based cohort studies, Den Ruijter et al found risk of first-time MI or stroke was related positively to both the Framingham Risk Score and the adjusted common CIMT. The mean common CIMT was 0.73 mm, and it increased in every cohort with patient age during a median follow-up of 11 years. For every 0.1-mm difference in common CIMT, the hazard ratio (HR) for risk of MI or stroke, which occurred in 4007 patients, was 1.12 (95% confidence interval [CI], 1.09 to 1.14) for women and 1.08 (95% CI, 1.05 to 1.11) for men. However, adding common CIMT measurements to the Framingham Risk Score did not improve risk prediction and resulted in reclassification of risk in only 6.6% of patients. The added value of mean common CIMT in reclassifying risk was only 0.8% (95% CI, 0.1% to 1.6%) and did not differ between men and women. The C statistic of the Framingham Risk Score model with and without CIMT was similar between men (0.759; 95% CI, 0.752 to 0.766) and women (0.757; 95% CI, 0.749 to 0.764), suggesting the addition of CIMT in risk assessment offered limited benefit.

In another 2012 meta-analysis of individual participant data pooled from 16 studies (total N=36,984 patients), Lorenz et al examined CIMT progression from 2 ultrasound screenings taken 2 to 7 years apart (median, 4 years).(5) Patients were followed for a mean of 7 years, during which time 1339 strokes, 1519 MI, and 2028 combined end points (MI, stroke, vascular death) occurred. Mean CIMT of the 2 ultrasound results was predictive of cardiovascular risk using the combined end point (adjusted HR=1.16; 95% CI 1.10 to 1.22). In sensitivity analyses, no associations were found between cardiovascular risk and individual CIMT progression regardless of CIMT definition, end point, and adjustments. As an example, for the combined end points, an increase of 1 SD in mean common CIMT progression resulted in an overall estimated hazard ratio of 0.97 (95% CI, 0.94 to 1.00) when adjusted for age, sex, and mean common CIMT; the hazard ratio was 0.98 (95% CI, 0.95 to 1.01) when adjusted for vascular risk factors. These data confirmed that CIMT is a predictor of cardiovascular risk, but did not demonstrate that changes in CIMT over time are predictive of future events.

A 2013 meta-analysis of 15 articles by van den Oord et al. found similar results on the added value of CIMT.(6) Six cohort studies totaling 32,299 patients were evaluated to examine the value of CIMT added to traditional cardiovascular risk factors. While a CIMT increase of 0.1 mm was predictive for MI (HR=1.15; 95% CI: 1.12 to 1.18) and for stroke (HR =1.17; 95% CI: 1.15 to 1.21), the addition of CIMT did not statistically significantly increase risk prediction over traditional cardiovascular risk factors (p=0.8).

Studies have found that including carotid plaques in CIMT measurements increases the predictive value of
cardiovascular risk over CIMT assessed only in plaque-free sites. (7-10) However, the meta-analysis by Lorenz found no difference in the main results between studies that included CIMT with carotid plaque and plaque-free CIMT. (5) The 2012 systematic review by Peters et al found adding carotid plaque to the traditional CIMT model increased the C statistic from 0.01 to 0.06. (11)

Prospective Cohort Studies
Numerous prospective cohort studies have evaluated the association of CIMT with future cardiovascular events. Some of the larger trials are discussed below.

In the Atherosclerosis Risk in Communities (ARIC) study, the authors evaluated risk factors associated with increased CIMT in 15,800 subjects. (12) CIMT had a graded relationship with increasing quartiles of plasma total cholesterol, low-density lipoprotein cholesterol (LDL-C), and triglycerides. CIMT was then also correlated with the incidence of coronary heart disease (CHD) in a subgroup of patients enrolled in the trial after 4 to 7 years of follow-up. (13) Among the 12,841 subjects studied, there were 290 incident events. The HR rate for men and women, adjusted for age and gender, comparing extreme CIMT (i.e., ≥1 mm) with non-extreme CIMT (i.e., <1 mm) was 5.07 for women and 1.85 for men. The strength of the relationship was reduced by including major CHD risk factors but remained elevated for higher measurements of CIMT. The authors concluded that mean CIMT is a noninvasive predictor of future CHD incidence.

The Rotterdam study was a prospective cohort study that started in 1989 and recruited 7,983 men and women aged 55 years and older. The main objective of the Rotterdam study was to investigate the prevalence and incidence of risk factors for chronic diseases, including cardiovascular disease, in elderly people. One aspect of the study sought to determine whether progression of atherosclerosis in asymptomatic elderly subjects is a prelude to cardiovascular events. Measurements of CIMT were used to assess the progression of atherosclerosis. Increasing CIMT was associated with increasing risks of stroke and MI. (14)

O'Leary et al. performed CIMT in 4,476 asymptomatic subjects aged 65 years or older without clinical cardiovascular disease. (15) The incidence of cardiovascular events correlated with measurements of CIMT; this association remained significant after adjustment for traditional risk factors. The authors concluded that increases in CIMT are directly associated with an increased risk of MI and stroke in older adults without a history of cardiovascular disease.

The longitudinal Carotid Atherosclerosis Progression Study (CAPS) was a longitudinal study of 4,904 subjects. All subjects received a baseline CIMT measurement, as well as traditional risk factor analysis, and were followed over a 10-year period (mean follow-up, 8.5 years; range, 7.1-10.0 years). Adverse outcome events were MI in 73 patients (1.5%), angina or MI in 271 patients (5.5%), and death in 72 subjects (1.5%). Lorenz et al. have published a retrospective review of the data from CAPS. (16) The authors modeled the predictive value of CIMT on the cardiovascular adverse events within that decade. Because the thresholds of CIMT measurements that would lead to reclassification of risk are unknown, the authors used 24 different models of reclassification and 5 statistical tests. Each model compared the predictive value of traditional risk factors alone with those risk factors with the addition of CIMT. The authors were unable to find significance in the reclassification models with the addition of CIMT measurements. They concluded that this retrospective analysis does not support use of CIMT as a clinically useful risk classification tool when used in conjunction with traditional risk factor analysis.

In the Multi-Ethnic Study of Atherosclerosis (MESA) trial, an ongoing cohort study of atherosclerosis, CIMT was found to be a modestly better predictor of stroke but a worse predictor of CHD than coronary artery calcium (CAC) score at a median follow-up of 3.9 years among 6698 adults asymptomatic at baseline. (17) In a 2010 article from the MESA trial, CIMT results in 4792 healthy, nondiabetic adults who were not on lipid-lowering medications were compared across 6 different lipid groups, including normalolpemia and several types of common dyslipidemias. (18) Mean CIMT values were increased only for the combined hyperlipidemia (defined as any high-density lipoprotein cholesterol [HDL-C] level, LDL-C ≥160, and triglyceride ≥150) and simple hypercholesterolemia (defined as any HDL-C level, LDL-C ≥160, and triglyceride <150) groups. In another MESA report (2011) on 6760 patients with elevated high-sensitivity C-reactive protein (hsCRP) as defined by the JUPITER study, CIMT increases correlated with obesity but only mildly with hsCRP. (19) A 2015 report from MESA trial of 6125 individuals with a family history of premature CHD identified 382 atherosclerotic CAD events at a mean follow-up of 10.2 years. (20) The study found that CAC improved the risk estimation atherosclerotic CAD events but CIMT did not.

In the Bogalusa Heart Study (N=991 subjects), obesity along with overweight and elevated metabolic risk were
associated with increased CIMT. In this study population, 41% of patients were found to have increased CHD risk. In the CARDIA study, clotting factor VII was associated with increases in CIMT in 1254 subjects. (21) CIMT has also been used as a surrogate outcome measure in atherosclerosis treatment research studies. (22) In 2010, Raiko et al. compared cardiovascular disease risk scoring tools for identification of CHD risk to CIMT results in 2,204 healthy adults, ages 24 to 39 years, from the Cardiovascular Risk in Young Finns study. (24) The cardiovascular disease risk scoring tools evaluated included the Framingham, Reynolds Risk Score, Systematic Coronary Risk Evaluation (SCORE), PROCAM, and Finrisk cardiovascular risk scores. In this population-based follow-up study, the authors found all cardiovascular disease risk scores performed equally in being able to predict subclinical atherosclerosis, as measured by high CIMT 6 years later.

The BioImage study enrolled 5808 asymptomatic individuals from the United States. (25) All patients were evaluated by 3-dimensional carotid ultrasound and by coronary artery calcification score, and followed for a mean of 2.7 years. The primary end point was major cardiovascular events, defined as cardiovascular death, MI, and ischemic stroke. The carotid plaque burden was an independent predictor of outcomes, with an HR of 2.36 (95% CI: 1.13 to 4.92) for individuals in the highest tertile. The coronary calcium score was also an independent predictor of outcomes, with similar HRs to carotid plaque. Both carotid plaque and coronary calcium score led to significant net reclassification, with a net reclassification index of 0.23.

Section Summary
Evidence from large, prospective cohort studies has established that CIMT is an independent risk factor for cardiovascular disease. However, systematic reviews have concluded that the ability of CIMT to reclassify patients into clinically relevant categories is modest and may not be clinically important. The uncertainty concerning the ability to reclassify patients into clinically relevant categories limits the potential for CIMT to improve health outcomes.

Clinical Utility
In a 2011 study by Johnson et al., 355 patients, aged 40 years with one or more cardiovascular disease risk factors, received carotid ultrasound screenings to prospectively determine whether abnormal results would change physician and patient behaviors. (26) Results were considered abnormal (when CIMT was greater than the 75th percentile or with the presence of carotid plaque) in 266 patients. Self-reported questionnaires were completed before the carotid ultrasound, immediately after the ultrasound, and 30 days later to determine behavioral changes. Physician behavior in prescribing aspirin and cholesterol medication changed significantly (p<0.001 and p<0.001, respectively) after identification of abnormal carotid ultrasound results. Abnormal ultrasound results predicted reduced dietary sodium (odds ratio [OR], 1.45; P=0.002) and increased fiber intake (OR=1.55; P=0.022) in patients but no other significant changes. Health outcomes were not evaluated in this study, and the short-term follow-up limits interpretation of results.

The evidence on reclassification of cardiovascular risk offers a potential indirect chain of evidence to improve outcomes. If a measure is able to reclassify patients into risk categories that have different treatment approaches, then clinical management changes may occur that lead to improved outcomes. Because the ability to reclassify patients into clinically relevant categories with CIMT is modest at best, the clinical utility of this measure for reclassification is uncertain.

Section Summary
There is no direct evidence on the clinical utility of measuring CIMT for cardiac risk stratification. The available evidence on reclassification into clinically relevant categories does not support that use of CIMT will improve health outcomes.

Ongoing and Unpublished Clinical Trials
Some currently unpublished trials that might influence this policy are listed in Table 1.

Table 1. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
</table>

Summary of Evidence

For individuals who are undergoing cardiac risk assessment who receive ultrasonic measurement of carotid intima-media thickness (CIMT), the evidence includes large cohort studies and systematic reviews. Relevant outcomes are test accuracy and morbid events. Some studies correlate increased CIMT with many other commonly used markers for risk of coronary heart disease (CHD) and with risk for future cardiovascular events. A 2012 meta-analysis of individual participant data by Lorenz et al found that CIMT was associated with increased cardiovascular events although CIMT progression over time was not associated with increased cardiovascular event risk. In a 2012 systematic review by Peters et al, the added predictive value of CIMT was modest, and the ability to reclassify patients into clinically relevant categories was not demonstrated. The results from these reviews and other studies have demonstrated the predictive value of CIMT is uncertain, and that the predictive ability for any level of population risk cannot be determined with precision. In addition, available studies do not define how use of CIMT in clinical practice improves outcomes. There is no scientific literature that directly tests the hypothesis that measurement of CIMT results in improved patient outcomes and no specific guidance on how measurements of CIMT should be incorporated into risk assessment and risk management. The evidence is insufficient to determine the effects of the technology on health outcomes.

Practice Guidelines and Position Statements

American College of Cardiology and American Heart Association

A 2013 guideline on the assessment of cardiovascular risk from the American College of Cardiology and the American Heart Association (ACC/AHA) does not recommend CIMT for routine risk assessment of a first atherosclerotic cardiovascular disease event (ACC/AHA Class III: no benefit, level of evidence B).(27) This differs from the previous 2010 version of the ACC/AHA guidelines for assessment of cardiovascular risk,(28) which indicated CIMT might be reasonable for assessing cardiovascular risk in intermediate-risk asymptomatic adults.

American Society of Echocardiography

The American Society of Echocardiography Consensus Statement(29) endorsed by the Society for Vascular Medicine, states that CIMT is a feature of arterial wall aging "that is not synonymous with atherosclerosis, particularly in the absence of plaque." The statement recommends measurement of both CIMT and carotid plaque by ultrasound "for refining CVD [cardiovascular disease] risk assessment in patients at intermediate cardiovascular disease risk (Framingham Risk Score 6–20%) without established CHD, peripheral arterial disease, cerebrovascular disease, diabetes mellitus, or abdominal aortic aneurysm." However, the authors acknowledge that "More research is needed to determine whether improved risk prediction observed with CIMT or carotid plaque imaging translates into improved patient outcomes."

NCEP Adult Treatment Panel

The Third Report of National Cholesterol Education Program Adult Treatment Panel (2003) does not recommend using "emerging risk factors" in the assessment of persons for primary prevention. It does state that "emerging risk factors" may be useful in certain patient-centered circumstances.(2)

U.S. Preventive Services Task Force Recommendations

In October 2009, the U.S. Preventive Services Task Force (USPSTF) published a systematic review of CIMT within the scope of a larger recommendation statement entitled "Using Nontraditional Risk Factors in Coronary Heart Disease Risk Assessment."(30) On the basis of one fair- and 2 good-quality studies, USPSTF states that CIMT, independent of Framingham risk factors, predicts CHD in asymptomatic patients. These studies were longitudinal, population-based studies conducted in the United States and the Netherlands. USPSTF reviewed the Atherosclerosis Risk in Communities (ARIC) study and concluded that CIMT measurement can result in risk prediction that is modestly improved, particularly in adult men. However, the review cautions that the studies that
did show an association were all done in a research setting, and therefore one cannot draw conclusions on the applicability of CIMT to the intermediate-risk population at large. The studies that USPSTF referenced are further detailed within this policy.

The Summary of Recommendation specific to CIMT is stated as: “The U.S. Preventive Services Task Force (USPSTF) concludes that the current evidence is insufficient to assess the balance of benefits and harms of using … [CIMT] … to screen asymptomatic men and women with no history of CHD to prevent CHD events.” USPSTF identifies the following research need: “The predictive value … of carotid IMT … should be examined in conjunction with traditional Framingham risk factors for predicting CHD events and death.”

Medicare National Coverage
There is no national coverage determination (NCD). In the absence of an NCD, coverage decisions are left to the discretion of local Medicare carriers.

References

Appendix

N/A
History

<table>
<thead>
<tr>
<th>Date</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/16/03</td>
<td>Add to Medicine Section - New Policy</td>
</tr>
<tr>
<td>01/11/05</td>
<td>Replace Policy - Policy updated with literature review; no change in policy statement; references added.</td>
</tr>
<tr>
<td>11/11/05</td>
<td>Replace Policy - Policy updated with literature review; no change in policy statement; reference added.</td>
</tr>
<tr>
<td>05/26/06</td>
<td>Update Scope and Disclaimer - No other changes.</td>
</tr>
<tr>
<td>11/14/06</td>
<td>Replace Policy - Policy updated with literature review; policy statement unchanged. References added.</td>
</tr>
<tr>
<td>01/08/08</td>
<td>Replace Policy - Policy updated with literature review; no change to policy statement. References added.</td>
</tr>
<tr>
<td>08/11/09</td>
<td>Replace Policy - Policy updated with literature search. Minor edits made to the policy statement, intent unchanged. References added.</td>
</tr>
<tr>
<td>09/14/10</td>
<td>Replace Policy - Policy updated with literature review; references 1, 3 and 8 have been added. The policy statement remains unchanged.</td>
</tr>
<tr>
<td>09/11/12</td>
<td>Replace policy. Policy updated with literature review, policy statement unchanged. References 3-8 and 25 added.</td>
</tr>
<tr>
<td>09/27/13</td>
<td>Replace policy. Policy updated with literature review through May 2013, policy statement unchanged. References 3-4 added.</td>
</tr>
<tr>
<td>10/18/13</td>
<td>Update Related Policies. Add 2.04.509.</td>
</tr>
<tr>
<td>12/22/14</td>
<td>Update Related Policies. Remove 6.01.03 as it was archived.</td>
</tr>
<tr>
<td>01/14/15</td>
<td>Coding update. New CPT code 93895, effective 1/1/15, added to policy.</td>
</tr>
<tr>
<td>09/08/15</td>
<td>Annual Review. Policy updated with literature review through May 31, 2015; references 17-19 removed; reference 24 added. No change to policy statement. CPT codes 93880 & 93882 removed; these are not reviewed.</td>
</tr>
<tr>
<td>07/12/16</td>
<td>Annual Review. Policy updated with literature review through June 20, 2016. USPSTF recommendation updated. Reference added.</td>
</tr>
<tr>
<td>03/14/17</td>
<td>Annual review. Policy updated with literature review through December 15, 2016; reference 20 added. Policy statement unchanged.</td>
</tr>
</tbody>
</table>

Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. The Company adopts policies after careful review of published peer-reviewed scientific literature, national guidelines and local standards of practice. Since medical technology is constantly changing, the Company reserves the right to review and update policies as appropriate. Member contracts differ in their benefits. Always consult the member benefit booklet or contact a member service representative to determine coverage for a specific medical service or supply. CPT codes, descriptions and materials are copyrighted by the American Medical Association (AMA). ©2017 Premera All Rights Reserved.
Discrimination is Against the Law

Premera Blue Cross complies with applicable Federal civil rights laws and does not discriminate on the basis of race, color, national origin, age, disability, or sex. Premera does not exclude people or treat them differently because of race, color, national origin, age, disability or sex.

If you need these services, contact the Civil Rights Coordinator.

You can file a grievance in person or by mail, fax, or email. If you need help filing a grievance, the Civil Rights Coordinator is available to help you.

You can also file a civil rights complaint with the U.S. Department of Health and Human Services, Office for Civil Rights, electronically through the Office for Civil Rights Complaint Portal, available at https://ocrportal.hhs.gov/ocr/portal/lobby.jsf, or by mail or phone at:

U.S. Department of Health and Human Services
200 Independence Avenue SW, Room 509F, HHH Building
Washington, D.C. 20201, 1-800-368-1019, 800-537-7697 (TDD)
Complaint forms are available at:

Getting Help in Other Languages

This Notice has Important Information. This notice may have important information about your application or coverage through Premera Blue Cross. There may be key dates in this notice. You may need to take action by certain deadlines to keep your health coverage or help with costs. You have the right to get this information and help in your language at no cost.

Call 800-722-1471 (TTY: 800-842-5357).

Oromo (Cushite):

Français (French):

Kreyòl ayisyen (Creole):
Avi sila a gen Enfòmasyon Enpòtan ladan. Avi sila a kapab genyen enfòmasyon enpòtan konsènan aplikasyon w lan oswa konèsann ku vev a iriny asirans lan atravé Premera Blue Cross. Kapab genyen dat ki enpòtan nan avi sila a. Ou ka gen pou pran kék aksyon avan sèten dat limit pou ka kenbe kouvèti asirans sante w la oswa pou yo ka ede w avèk depans yo. Se dwa w pou resevwa enfòmasyon sa a ak assisants nan lang ou pale a, san ou pa gen pou pey e pase sa. Rate nan 800-722-1471 (TTY: 800-842-5357).

Deutsche (German):

Hmoob (Hmong):
Tsbab ntawv tshiay no muaj cov ntshiab lus tseem ceeb. Tej zaum tsab ntawv tshiay no muaj cov ntshiab lus tseem ceeb koj daim ntawv thov kev pov los yot koj qhov kev pov cuam los ntawm Premera Blue Cross. Tej zaum muaj cov hnuv tseem ceeb us aos rau hauv daim ntawv no. Tej zaum koj kuyuuv taau uu qee yam us peb kom koj us tsab pub dhaav cov caij nyong uas teev tseng rau hauv daim ntawv no mas koj kuyuuv taau bas tsab kev pov cuam kho hauv los yot kev pov tem tej nqi kho hauv daim ntawv. Koj muaj cai kom laww muab cov ntshiab lus no uas tuu muab saa uu koj homus lus pub dawb rau koj. Hu rau 800-722-1471 (TTY: 800-842-5357).

Ilokano (Ilocano):
Daytoy a Pakdaak ket naglaon iti Napateg nga Impormasion. Daytoy a pakdaak mabalun nga adda ket naglaon iti napateg nga impormasion maiyanggep iti aplikasyonu wenn coverage babaen iti Premera Blue Cross. Daytoy ket mabalun dagiti importante a pelta iti daytoy a pakdaak. Mabalun nga adda rumbeng nga aramidenyo nga addang sakbay dagiti partikular a nalituding nga adaw tapno mapagtalinadayo ti coverage ti salun-ayyo wenn tulong kadagiti gastos. Adda karbenganyo a mangala iti daytoy nga impormasion ken tulong iti bukdoyo a pagasasao nga awan ti bayadanyo. Tumawag iti numero nga 800-722-1471 (TTY: 800-842-5357).

Italiano (Italian):
Premera Blue Cross member, please contact Premera Blue Cross at 800-722-1471 (TTY: 800-842-5357) to obtain this information. This information may be necessary if you are changing plans or need to verify coverage information or obtain additional coverage if your plan contains these benefits.

If you are a Premera Blue Cross member and you have questions about these benefits or need to make a claim, please contact Premera Blue Cross at 800-722-1471 (TTY: 800-842-5357).