MEDICAL POLICY – 12.04.108
Fetal RHD Genotyping Using Maternal Plasma

BCBSA Ref. Policy: 2.04.108
Effective Date: Aug. 1, 2017
Last Revised: July 11, 2017
Replaces: 2.04.108
RELATED MEDICAL POLICIES: None

Introduction

The Rhesus (Rh) factor is a protein on some people’s red blood cells. If a blood test shows the protein is on the red blood cells, the person is said to be Rh positive. If the protein is not on the surface of the red cells, the person is Rh negative. Knowing the Rh factor is important during a pregnancy. If the mother is Rh negative but the fetus is Rh positive, during pregnancy, labor, or birth some of their blood can mix. The mother’s body then makes antibodies against the Rh protein. (An antibody is a protein made by the immune system when it detects foreign substances.) If the mother becomes pregnant again with another Rh positive fetus, the mom’s antibodies can cross the placenta and attack the fetus’ red cells. This can cause serious problems for the baby. A shot of a medication known as Rh immune globulin (RhIG) keeps the mother from developing antibodies to the baby’s Rh factor. This shot may be given during pregnancy or after delivery. A standard blood test is used during pregnancy to find out if mother and baby have compatible Rh factors. A genetic test has been developed to find out this same information. This genetic test is investigational (unproven). There is not enough medical evidence to show if this test is as good as or better than a standard blood test in determining the Rh factor.

Note: The Introduction section is for your general knowledge and is not to be taken as policy coverage criteria. The rest of the policy uses specific words and concepts familiar to medical professionals. It is intended for providers. A provider can be a person, such as a doctor, nurse, psychologist, or dentist. A provider also can be a place where medical care is given, like a hospital, clinic, or lab. This policy informs them about when a service may be covered.
Policy Coverage Criteria

Service	Investigational
Fetal RHD genotyping | Fetal RHD genotyping using maternal plasma, including but not limited to the SensiGene™ Fetal RhD Genotyping test, is considered investigational.

Coding

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td></td>
</tr>
<tr>
<td>81403</td>
<td>Molecular pathology procedure, Level 4 (eg, analysis of single exon by DNA sequence analysis, analysis of >10 amplicons using multiplex PCR in 2 or more independent reactions, mutation scanning or duplication/deletion variants of 2-5 exons)</td>
</tr>
<tr>
<td>81479</td>
<td>Unlisted molecular pathology procedure</td>
</tr>
</tbody>
</table>

Note: CPT codes, descriptions and materials are copyrighted by the American Medical Association (AMA). HCPCS codes, descriptions and materials are copyrighted by Centers for Medicare Services (CMS).

Related Information

N/A

Evidence Review

Description

Rhesus D (RhD)–negative women who are exposed to RhD-positive red blood cells can develop anti-Rh antibodies, which can cross the placenta and cause fetal anemia. If undiagnosed and untreated, these antibodies can cause significant perinatal morbidity and mortality. Determining
the RhD status of the fetus may guide subsequent management of the pregnancy. The use of cell-free fetal DNA in maternal blood has been proposed as a noninvasive method to determine fetal RHD genotype.

Background

Alloimmunization

Alloimmunization refers to the development of antibodies against a non-self protein. If a patient whose blood type is Rhesus D (RhD)–negative is exposed to RhD-positive red blood cells (RBCs), the RhD-negative person will develop antibodies against the RhD-positive RBCs. This most commonly occurs from fetal-placental hemorrhage and entry of RhD-positive fetal blood cells into maternal circulation. The management of an RhD-negative pregnant patient who has not been alloimmunized and is carrying a known RhD-positive fetus, or if fetal RhD status is unknown, involves administration of RhD immunoglobulin at standardized times during the pregnancy to prevent formation of anti-RhD antibodies. If the patient is already alloimmunized, monitoring the levels of anti-RhD antibody titers and for the development of fetal anemia is performed. Both noninvasive and invasive tests to determine fetal RhD status exist.

Rh Blood Groups

The Rhesus (Rh) system includes more than 100 antigen varieties found on RBCs. RhD is the most common and the most immunogenic. When people have the RhD antigen on their RBCs, they are considered to be RhD-positive; if their RBCs lack the antigen, they are considered to be RhD-negative. The RhD antigen is inherited in an autosomally dominant fashion, and a person may be heterozygous (Dd) (∼60% of Rh-positive people) or homozygous (DD) (∼40% of Rh-positive people). Homozygotes always pass the RhD antigen to their offspring, whereas heterozygotes have a 50% chance of passing the antigen to their offspring. A person who is RhD-negative does not have the Rh antigen. Although nomenclature refers to RhD-negative as dd, there is no small d antigen (ie, they lack the RhD gene and the corresponding RhD antigen).

RhD-negative status varies among ethnic group and is 15% in whites, 5% to 8% in blacks, and 1% to 2% in Asians and Native Americans.

In the white population, almost all RhD-negative individuals are homozygous for a deletion of the RhD gene. However, in the black population, only 18% of RhD-negative individuals are homozygous for an RhD deletion, and 66% of RhD-negative blacks have an inactive RhD
pseudogene (RhDψ). There are also numerous rare variants of the D antigen, which are recognized by weakness of expression of D and/or by absence of some of the epitopes of D. Some individuals with variant D antigens, if exposed to RhD-positive RBCs, can make antibodies to one or more epitopes of the D antigen.²

RhD-negative women can have a fetus that is RhD-positive if the fetus inherits the RhD-positive antigen from the father.

Causes of Alloimmunization

By 30 days of gestation, the RhD antigen is expressed on the RBC membrane, and alloimmunization can be caused when fetal RhD-positive RBCs enter maternal circulation, and the RhD-negative mother develops anti-D antibodies.² Once anti-D antibodies are present in a pregnant woman’s circulation, they can cross the placenta and cause destruction of fetal RBCs.

The production of anti-D antibodies in RhD-negative women is highly variable and significantly affected by several factors, including the volume of fetomaternal hemorrhage, the degree of maternal immune response, concurrent ABO incompatibility, and fetal homozygosity versus heterozygosity for the D antigen. Therefore, although about 10% of pregnancies are Rh-incompatible, less than 20% of RhD-incompatible pregnancies actually lead to maternal alloimmunization.

Small fetomaternal hemorrhages of RhD-positive fetal RBCs into the circulation of an RhD-negative woman occurs in nearly all pregnancies, and percentages of fetomaternal hemorrhage increase as the pregnancy progresses: 7% in the first trimester, 16% in the second trimester, and 29% in the third trimester, with the greatest risk of RhD alloimmunization occurring at birth (15%-50%). Transplacental hemorrhage accounts for almost all cases of maternal RhD alloimmunization.

Fetomaternal hemorrhage can also be associated with miscarriage, pregnancy termination, ectopic pregnancy, invasive in-utero procedures (eg, amniocentesis), in utero fetal death, maternal abdominal trauma, antepartum maternal hemorrhage, and external cephalic version. Other causes of alloimmunization include inadvertent transfusion of RhD-positive blood and RhD-mismatched allogeneic hematopoietic stem cell transplantation.
Consequences of Alloimmunization

Immunoglobulin (Ig) G antibody–mediated hemolysis of fetal RBCs, known as hemolytic disease of the fetus and newborn, varies in severity and can have a variety of manifestations. The anemia can range from mild to severe with associated hyperbilirubinemia and jaundice. In severe cases, hemolysis may lead to extramedullary hematopoiesis and reticuloendothelial clearance of fetal RBCs, which may result in hepatosplenomegaly, decreased liver function, hypoproteinemia, ascites, and anasarca. When accompanied by high-output cardiac failure and pericardial effusion, this condition is known as hydrops fetalis, which without intervention, is often fatal for the fetus. Intensive neonatal care, including emergent exchange transfusion, is required.

Cases of hemolysis in the newborn that do not result in fetal hydrops can still lead to kernicterus, a neurologic condition observed in infants with severe hyperbilirubinemia due to the deposition of unconjugated bilirubin in the brain. Symptoms that manifest several days after delivery can include poor feeding, inactivity, loss of the Moro reflex, bulging fontanelle, and seizures. The 10% of infants who survive may develop spastic choreoathetosis, deafness, and/or mental retardation.

Hemolytic disease of the fetus or newborn was once a major contributor to perinatal morbidity and mortality. However, the widespread use of antenatal and postpartum RhD immune globulin in developed countries has resulted in a major decrease in the frequency of this disease. In developing countries without prophylaxis programs, stillbirth occurs in 14% of affected pregnancies and 50% of surviving infants either die in the neonatal period or develops cerebral injury.\(^3\)

Prevention of Alloimmunization

There are 4 RhD immunoglobulin products available in the United States, all of which undergo micropore filtration to eliminate viral transmission.\(^3\) To date, no reported cases of viral infection related to RhD immunoglobulin administration have been reported in the United States.\(^3\) Theoretically, the Creutzfeldt-Jakob disease agent could be transmitted by use of RhD immunoglobulin. Local adverse reactions may occur including redness, swelling, mild pain at the site of injection, and hypersensitivity reactions.

The American College of Obstetricians and Gynecologists (ACOG) and the American Association of Blood Banks (AABB) recommend the first dose of Rh\(_D\) (D) immunoglobulin (eg, RhoGAM®) be given at 28 weeks of gestation (or earlier if there’s been an invasive event), followed by a postpartum dose given within 72 hours of delivery.
Diagnosis of Alloimmunization

The diagnosis of alloimmunization is based on detection of anti-RhD antibodies in the maternal serum. The most common test for determining antibodies in serum is the indirect Coombs test.³ Maternal serum is incubated with known RhD-positive RBCs. Any anti-RhD antibody present in the maternal serum will adhere to the RBCs. The RBCs are then washed and suspended in Coombs serum, which is antihuman globulin. RBCs coated with maternal anti-RhD will agglutinate, which is referred to as a positive indirect Coombs test. The indirect Coombs titer is the value used to direct management of pregnant alloimmunized women.

Management of Alloimmunization During Pregnancy

A patient’s first alloimmunized pregnancy involves minimal fetal or neonatal disease. Subsequent pregnancies are associated with more severe degrees of fetal anemia. Treatment of an alloimmunized pregnancy requires monitoring of maternal anti-D antibody titers and serial ultrasound assessment of middle cerebral artery peak systolic velocity of the fetus.

If severe fetal anemia is present near term, delivery is performed. If severe anemia is detected remote from term, intrauterine fetal blood transfusions may be performed.

Determining Fetal RhD Status

ACOG recommends that all pregnant women should be tested at the time of their first prenatal visit for ABO blood group typing and RhD type and be screened for the presence of anti-RBC antibodies. These laboratory tests should be repeated for each subsequent pregnancy. AABB also recommends that antibody screening be repeated before administration of anti-D immune globulin at 28 weeks of gestation, postpartum, and at the time of any event during pregnancy.

If the mother is determined to be RhD-negative, the paternal RhD status should also be determined at the initial management of a pregnancy. If paternity is certain and the father is RhD-negative, the fetus will be Rh-negative, and further assessment and intervention are unnecessary. If the father is RhD-positive, he can be either homozygous or heterozygous for the D allele. If he is homozygous for the D allele (ie, D/D), then the fetus is RhD-positive. If the paternal genotype is heterozygous for Rh status or is unknown, determination of the RhD-status of the fetus is the next step to assess the RhD compatibility in the pregnancy (either first or any subsequent pregnancy).
Invasive and noninvasive testing methods to determine the RhD status of a fetus are available.

Invasive procedures use polymerase chain reaction (PCR) assays to assess the fetal cellular elements in amniotic fluid by amniocentesis or by chorionic villus sampling (CVS). Although CVS can be performed earlier in a pregnancy, amniocentesis is the preferred method because CVS is associated with disruption of the villi and the potential for larger fetomaternal hemorrhage and worsening alloimmunization if the fetus is RhD-positive. The sensitivity and specificity of fetal RhD typing by PCR are reported as 98.7% and 100%, respectively, with positive and negative predictive values of 100% and 96.9%, respectively.4

Noninvasive testing involves molecular analysis of cell-free fetal DNA (cffDNA) in the maternal plasma or serum. In 1998, Lo et al showed that about 3% of cffDNA in the plasma of first trimester pregnant women is of fetal origin, with this percentage rising to 6% in the third trimester.5 Fetal DNA cannot be separated from maternal DNA, but if the pregnant woman is RhD-negative, the presence of specific exons of the RhD gene, which are not normally present in the circulation of an RhD-negative patient, predicts an RhD-positive fetus. cffDNA has been proposed as a noninvasive alternative to obtaining fetal tissue by invasive methods, which are associated with a risk of miscarriage.1

The large quantity of maternal DNA compared with fetal DNA in the maternal circulation complicates the inclusion of satisfactory internal controls to test for successful amplification of fetal DNA. Therefore, reactions to detect Y chromosome-linked gene(s) can be included in the test, which will be positive when the fetus is a male.1 When Y chromosome-linked genes are not detected, tests for polymorphisms may be performed to determine whether the result is derived from fetal but not maternal DNA.

cffDNA testing to determine the fetal RhD genotype is standard of practice in many European countries.3

Summary of Evidence

For individuals who are pregnant and have Rhesus D (RhD)–negative blood type who receive noninvasive RhD genotyping of the fetus using cell-free DNA from maternal plasma, the evidence includes a meta-analysis and additional prospective studies (for clinical validity) and no direct evidence (for analytic validity). Relevant outcomes are test accuracy and validity, morbid events, medication use, and treatment-related morbidity. Clinical validity studies have demonstrated that the sensitivity and specificity of the test are high. However, the false-negative test rate, which is low, is not zero, potentially leading to alloimmunization of the RhD-negative mothers in these cases. It is uncertain whether RhD genotyping using cell-free fetal DNA will
lead to improved health outcomes. The evidence is insufficient to determine the effects of the technology on health outcomes, therefore this testing is considered investigational.

Ongoing and Unpublished Clinical Trials

A search of ClinicalTrials.gov in April 2017 did not identify any ongoing or unpublished phase 3 trials that would likely influence this review.

Practice Guidelines and Position Statements

Neither the American College of Obstetricians and Gynecologists (ACOG) nor the American Association of Blood Banks (AABB) has issued specific practice guidelines or recommendations on the use of fetal RhD genotyping.

In 2016, ACOG reaffirmed its position that detection of fetal RhD using molecular analysis of maternal plasma or serum can be assessed in the second trimester with an accuracy greater than 99%, but that it should be noted that this is not a widely used clinical tool.\(^{10}\)

U.S. Preventive Services Task Force Recommendations

No U.S. Preventive Services Task Force recommendations addressing fetal RhD genotyping were identified.

Medicare National Coverage

There is no national coverage determination (NCD). In the absence of an NCD, coverage decisions are left to the discretion of local Medicare carriers.

Regulatory Status

Clinical laboratories may develop and validate tests in-house and market them as a laboratory service. Laboratory-developed tests (LDTs) must meet the general regulatory standards of the Clinical Laboratory Improvement Act (CLIA). Laboratories that offer LDTs must be licensed by
CLIA for high-complexity testing. To date, the U.S. Food and Drug Administration has chosen not to require any regulatory review of this test.

Sequenom offers SensiGene™ Fetal RHD Genotyping test, performed by proprietary SEQureDx™ technology. The assay targets exons 4, 5, and 7 of the RhD gene located on chromosome 1, psi (ψ) pseudogene in exon 4, and assay controls which are 3 targets on the Y chromosome (SRY, TTTY, DBY) using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based nucleic acid analysis.

Sequenom laboratories states the uses of this test include:

- Clarify fetal RhD status without testing the father, avoiding the cost of paternity testing and paternal genotyping
- Clarify fetal RhD status when maternal anti-D titers are unclear
- Identify the RhD (-) fetus in mothers who are opposed to immunization(s) and vaccines
- Identifying RhD (-) sensitized patients
- Avoid invasive testing by chorionic villus sampling (CVS) or genetic amniocentesis

References

History

<table>
<thead>
<tr>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/09/13</td>
<td>New Policy. New policy developed with review of the literature through October 6, 2013. Fetal RHD genotyping using maternal plasma is considered investigational.</td>
</tr>
<tr>
<td>01/13/15</td>
<td>Annual Review. Policy updated with literature review through September 26, 2014. Added name of commercially available next generation sequencing test to the Policy Guidelines. References 6 and 7 added; others renumbered. Policy statement unchanged. Remove ICD-9 and ICD-10 diagnosis codes; these are not utilized in policy adjudication.</td>
</tr>
<tr>
<td>01/12/16</td>
<td>Annual review. Policy updated with literature review; policy statement unchanged. Part of pilot formatting test group.</td>
</tr>
</tbody>
</table>

Disclaimer: This medical policy is a guide in evaluating the medical necessity of a particular service or treatment. The Company adopts policies after careful review of published peer-reviewed scientific literature, national guidelines and local standards of practice. Since medical technology is constantly changing, the Company reserves the right to review and update policies as appropriate. Member contracts differ in their benefits. Always consult the member benefit booklet or contact a member service representative to determine coverage for a specific medical service or supply. CPT codes, descriptions and materials are copyrighted by the American Medical Association (AMA). ©2017 Premera All Rights Reserved.

Scope: Medical policies are systematically developed guidelines that serve as a resource for Company staff when determining coverage for specific medical procedures, drugs or devices. Coverage for medical services is subject to the limits and conditions of the member benefit plan. Members and their providers should consult the member benefit booklet or contact a customer service representative to determine whether there are any benefit limitations applicable to this service or supply. This medical policy does not apply to Medicare Advantage.
Discrimination is Against the Law

Premera Blue Cross complies with applicable Federal civil rights laws and does not discriminate on the basis of race, color, national origin, age, disability, or sex. Premera does not exclude people or treat them differently because of race, color, national origin, age, disability or sex.

Premera:
- Provides free aids and services to people with disabilities to communicate effectively with you, such as:
 - Qualified sign language interpreters
 - Written information in other formats (large print, audio, accessible electronic formats, other formats)
- Provides free language services to people whose primary language is not English, such as:
 - Qualified interpreters
 - Information written in other languages

If you need these services, contact the Civil Rights Coordinator.

If you believe that Premera has failed to provide these services or discriminated in another way on the basis of race, color, national origin, age, disability, or sex, you can file a grievance:
- Civil Rights Coordinator - Complaints and Appeals
- PO Box 91102, Seattle, WA 98111
- Toll free 855-332-4535, Fax 425-918-5592, TTY 800-842-5357

Email AppealsDepartmentInquiries@Premera.com

Getting Help in Other Languages

This Notice has Important Information. This notice may have important information about your application or coverage through Premera Blue Cross. There may be key dates in this notice. You may need to take action by certain deadlines to keep your health coverage or help with costs. You have the right to get this information and help in your language at no cost.

Call 800-722-1471 (TTY: 800-842-5357).

Oromo (Cushite):

Deutsche (German):

Italiano (Italian):

中文 (Chinese):
本通知有重要的訊息。本通知可能有關於您透過 Premera Blue Cross 提交的申請或保險的重要訊息。本通知內可能有重要日期。您可能需要在截止日期之前採取行動，以保留您的健康保險或費用補貼。您有權利免費以您的母語得到本訊息和幫助。請撥電話 800-722-1471 (TTY: 800-842-5357).

Français (French):

Kreyòl ayisyen (Creole):
Avi sila a gen Enfòmasyon Enpòtan ladinan. Avi sila a kapab genyen enfòmasyon enpòt an konsènan aplikasyon w lan oswa konvèsan kouvèti asirans lan atravé Premera Blue Cross. Kapab genyen dat ki enpòt an avi sila a. Ou ka gen pou pran kék aksyon avan sèten dat limit pou ka kente kouvèti asirans sante w la oswa pou yo ka ede w avèk denps yo. Se dwa w pou resewa enfòmasyon sa a ak asistans nan lang ou pale a, san ou pa gen pou peye pou sa. Rate nan 800-722-1471 (TTY: 800-842-5357).

Italiano (Italian):
Premera Blue Cross. THROUGHOUT THE PERIOD mentioned in the NOTICE, Specific Dates are included. There may be important dates for making claims about your coverage. You are responsible for taking action before these dates.

On the one hand, you can maintain your health insurance and paid benefits. On the other hand, you will be required to pay the expenses for maintaining health insurance and paid benefits.

The information in this NOTICE is important. You must read this NOTICE carefully. You should keep this NOTICE for your records. If you have any questions about this NOTICE, you may call 1-800-722-1471 (TTY: 800-842-5357).

The Chinese (Mandarin):

本通知是重要的通知。在阅读本通知之前，请您阅读完整的本通知。在阅读本通知之前，请您阅读完整的本通知。在阅读本通知之前，请您阅读完整的本通知。